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REVIEW and PRELIMINARIES

I This handout continues Handout 11, which introduced
resolution for propositional logic .

I This handout also depends on Handout 29, which is a presentation of
unification , limited to the kind we use in first-order resolution.
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REVIEW and PRELIMINARIES

I First-order resolution starts from a Skolemized sentence whose matrix is in CNF.

I So, let ϕ be such a Skolemized first-order sentence:

ϕ , ∀x1 · · · ∀xk(C1 ∧ C2 ∧ · · ·Cn)

where each Ci is a disjunction of literals (atomic and negated atomic WFF’s).

I Standard practice is to write each disjunct (or clause ) Ci as a set of literals,

i.e., if Ci , (L1 ∨ L2 ∨ · · · Lp), we may write instead C′
i , {L1, L2, . . . , Lp}.

I The clausal form of ϕ is the set of clauses {C′
1,C

′
2, . . . ,C

′
n} where C′

i is the set
representation of Ci.

The clausal form of ϕ is therefore a set of sets of literals.1

1
As written, each C′

i may be a multiset, not a set, because some literals in Ci may be duplicates. One simplifying advantage of
the set representation is to disallow duplicated literals as well as duplicated clauses. C′

i and {C′
1, C′

2, . . . , C′
n} have to be adjusted

accordingly (left to you).
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REVIEW and PRELIMINARIES

I We can assume that each of the clauses in {C1,C2, . . . ,Cn}, or in its set
representation {C′

1,C
′
2, . . . ,C

′
n}, is universally quantified over all its variables –

because “∀” distributes over “∧”.

I Because each clause is implicitly universally closed, we can assume that for all
distinct clauses Ci and Cj, it holds that FV(Ci) ∩ FV(Cj) = ∅ (why?).

This is useful when we unify one literal Ci and one literal in Cj.

Assaf Kfoury, CS 511, Fall 2018, Handout 31 page 4 of 11



FIRST-ORDER RESOLUTION

I We need two rules for carrying out first-order resolution, both using unification: one
for resolution proper and one for what is called factoring .

I The resolution rule has two clauses, D1 and D2, as antecedents with:

I P(~s) , P(s1, . . . , sk) ∈ D1 and ¬P(~t) , ¬P(t1, . . . , tk) ∈ D2,
i.e., clauses D1 and D2 contain conflicting literals P(~s) and ¬P(~t),
modulo a unification of~s and~t, where P is a k-ary predicate symbol,

I we may assume FV(~s) ∩ FV(~t) = ∅ for a simpler unification,
I a most general unifier of P(~s) and P(~t) exists, σ , MGU

(
P(~s),P(~t)

)
,

and one conclusion (or resolvent clause) D:

I D ,
(
σ (D1)−

{
σ
(
P(~s)

)})
∪
(
σ (D2)−

{
σ
(
¬P(~t)

)})
I More succintly, the resolution rule is written:

D1 D2(
σ (D1)−

{
σ
(
P(~s)

)})
∪
(
σ (D2)−

{
σ
(
¬P(~t)

)})
where P(~s) ∈ D1 and ¬P(~t) ∈ D2 and σ , MGU

(
P(~s),P(~t)

)
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EXAMPLE OF HOW THE RESOLUTION RULE IS USED

{ P(x, y), P(y, x), P(x, a) } { ¬P(f (z), f (z)), Q(z) }
{ P(f (z), a), Q(z) } (σ)

where σ , {x 7→ f (z), y 7→ f (z)} and the members of the resolution pair are underlined.
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FIRST-ORDER RESOLUTION

I The factoring rule has one clause, D1, as an antecedent with:

I P(~s) , P(s1, . . . , sk) ∈ D1 and P(~t) , P(t1, . . . , tk) ∈ D1,
i.e., clause D1 contains two non-conflicting literals P(~s) and P(~t),
modulo a unification of~s and~t, where P is a k-ary predicate symbol,

I a most general unifier of P(~s) and P(~t) exists, σ , MGU
(
P(~s),P(~t)

)
,

and one conclusion (or resolvent clause) D:

I D , σ (D1)

With D1 in set representation, σ
(
P(~s)

)
and σ

(
P(~t)

)
are the same literal in σ (D1).

I More succintly, the factoring rule is written:2

D1

σ (D1)

where P(~s) ∈ D1 and P(~t) ∈ D1 and σ , MGU
(
P(~s),P(~t)

)

2
There is no need for a factoring rule in propositional resolution. Do you see why?
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EXAMPLE OF HOW THE FACTORING RULE IS USED

{ P(x, y), P(y, x), P(x, a) }
{ P(x, a), P(a, x) } (σ)

where σ , {y 7→ a} and the members of the unification pair are underlined.
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SOUNDNESS and COMPLETENESS

Theorem
Let Ψ0 = {C1,C2, . . . ,Cn} be the clausal form of a Skolemized first-order sentence ϕ.
We then have that:

1. Applying the resolution rule and factoring rule repeatedly in any order, we obtain
a sequence of clausal forms that is bound to terminate:

Ψ0 Ψ1 Ψ2 · · · Ψp for some p > 1

2. If ⊥ ∈ Ψp then ϕ is unsatisfiable (soundness).

3. If ϕ is unsatisfiable then ⊥ ∈ Ψp (completeness).
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Exercises
In the exercises below, keep in mind that First-Order Resolution starts from a Skolemized sentence
whose matrix is in CNF. In general, this requires that the initial input set of first-order sentences must
be transformed accordingly in a pre-processing phase.

1. Exercise. Redo Exercise 1 on the last slide of Handout 27, now using First-Order Resolution.

2. Exercise. Redo Exercise 2 on the last slide of Handout 27, now using First-Order Resolution.
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