
CS 511, Fall 2018, Handout 32

Brief Introduction to Abstract Interpretation
(one more approach to Static Program Analysis)

Assaf Kfoury

November 20, 2018 (adjusted: November 29, 2018)

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 1 of 19

PRELIMINARIES

I This handout on abstract interpretation complements

Handout 12 on program unwinding + Handout 25 on program schemes .

I All three handouts cover material in a wider area:
Static Program Analysis (SPA).

I General Goal of SPA:
Given a property ϕ of program behavior (e.g., related to termination, or
safety, or security, or correctness, etc.), we want to define a formal
methodologyMϕ to decide for any program P whether every execution of
P satisfies ϕ – without compiling and running P.

I The goal is to be achieved statically,
i.e., just by examining the text of the program P, prior to any execution.

I Ideally, methodologyMϕ should be amenable to efficient implementation
as an algorithm/automated tool that works directly on the text of P or
indirectly on an abstraction of P (e.g., a flowchart based on P, possibly
omitting some aspects of P, in the datatypes used by P or in the control
features of P, etc.).

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 2 of 19

PRELIMINARIES

I SPA is a worthy goal, but not achievable precisely for many properties:

“Does P halt for every input that is a natural number?”,
“Does P return the expected/correct output on every execution?”, etc.

I The difficulty is often bypassed/overcome in different ways:

I by limiting the goal, e.g. to finite domains:

“Does P halt for every input in the range {0, 1, . . . , 100}?”,
I by approximating the goal:

“If and when P halts, is its output correct/expected?”,
I by randomizing the goal:

“If and when P halts, is its output even or odd with equal probability?”,
I by abstracting from the goal:

“If and when P halts, is its output an even natural number?”,
I by omitting programming features:

“Does P halt for every input if P is loop-free?”,
I and by other ways.

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 3 of 19

PRELIMINARIES

I Many good reasons for SPA, including:

code optimization (to speed up execution),
safety analysis (such as type checking),
constant propagation,
live variable analysis,
strictness analysis,
bug detection,
· · ·

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 4 of 19

ABSTRACT INTERPRETATION: small example

I A tiny programming language, L0, its abstract syntax in extended BNF:

n ∈ num ::= · · ·
∣∣ − 3

∣∣ − 2
∣∣ − 1

∣∣ 0
∣∣ 1
∣∣ 2
∣∣ 3
∣∣ · · ·

e ∈ exp ::= n
∣∣ e1 + e2

∣∣ e1 ∗ e2

I Standard (or concrete) interpretation , syntax-directed definition:

JnKstd , n for every n ∈ num

Je1 + e2Kstd , Je1Kstd + Je2Kstd for every e1, e2 ∈ exp

Je1 ∗ e2Kstd , Je1Kstd ∗ Je2Kstd for every e1, e2 ∈ exp

which imply JexpKstd ,
{

JeKstd

∣∣ e ∈ exp
}
= Z.

For simplicity in the notation, we have not distinguished between the symbols
‘+’ and ‘∗’ (on the left of ,) and their standard interpretations as addition and
multiplication (on the right of ,).

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 5 of 19

ABSTRACT INTERPRETATION: small example (continued)

I Abstract interpretation –

just one instance of it, the so-called Rule-of-Sign interpretation, we choose
other instances of abstract interpretation depending on the properties we
want to study.

Preliminary notions for Rule-of-Sign:

a new domain, an abstraction of Z:

SIGN , {zero, pos, neg,>}

one unary map sign : Z→ SIGN, to transfer values from Z to SIGN:

sign(n) ,

zero if n = 0,

pos if n > 0,

neg if n < 0,

> if “we don’t know” the sign of n, i.e.

n is some unknown number in Z.

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 6 of 19

ABSTRACT INTERPRETATION: small example (continued)

two binary operations, ⊕ and ⊗, corresponding to
+ : Z× Z→ Z and ∗ : Z× Z→ Z:

⊕ : SIGN × SIGN→ SIGN

⊗ : SIGN × SIGN→ SIGN

⊕ zero pos neg >
zero zero pos neg >
pos pos pos > >
neg neg > neg >
> > > > >

⊗ zero pos neg >
zero zero zero zero zero
pos zero pos neg >
neg zero neg pos >
> zero > > >

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 7 of 19

ABSTRACT INTERPRETATION: small example (continued)

I Rule-of-Sign interpretation – an instance of abstract interpretation:

JnKros , sign(n) for every n ∈ num

Je1 + e2Kros , Je1Kros ⊕ Je2Kros for every e1, e2 ∈ exp

Je1 ∗ e2Kros , Je1Kros ⊗ Je2Kros for every e1, e2 ∈ exp

which imply JexpKros ,
{

JeKros

∣∣ e ∈ exp
}
= SIGN.

I for every expression in the original language,
e.g. e , −10 ∗ (71 + 79), we have two interpretations:

JeKstd = −1500 and JeKros = neg

How to relate standard/concrete interpretations and abstract
interpretations? What makes the latter relevant? First, some exercises . . .

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 8 of 19

ABSTRACT INTERPRETATION: small example (continued)
Exercise. Consider a programming language L1 which extends L0 on slide 5 :

x ∈ var ::= a
∣∣ b
∣∣ c
∣∣ · · ·

n ∈ num ::= · · ·
∣∣ -3

∣∣ -2
∣∣ -1

∣∣ 0
∣∣ 1
∣∣ 2
∣∣ 3
∣∣ · · ·

e ∈ exp ::= x
∣∣ n
∣∣ e1 + e2

∣∣ e1 ∗ e2
∣∣ e1 − e2

∣∣ if e1 then e2 else e3

where ‘+’, ‘∗’, and ‘−’, are to be interpreted in the usual way, as ‘addition’, ‘multiplication’,
and ‘subtraction’. The evaluation of the conditional starts with the evaluation of e1; if e1

evaluates to any value 6= 0, then e2 is evaluated, otherwise e3 is evaluated.

1. Define the concrete semantics of L1. Because expressions in L1 may contain
free variables, the concrete semantics of L1 must be a function J Kstd of two
arguments, an expression e ∈ exp together with a state σ : var→ Z. Following
common practice,1 we write the first argument e inside the double square brackets
and its second argument σ outside, as in JeKstdσ.

2. Extend the abstract interpretation (Rule-of-Sign) of L0 on slides 6 , 7 , and 8 ,
to the language L1. The abstract interpretation must be a function which returns a
value denoted JeKrosσ

′ for an appropriately defined state σ′.

1
A state σ here is the same as a state σ (abstract) or ρ (concrete) in Static Program Analysis by Moller and Schwartzbach.

Elsewhere in the literature, a state is also called a store or an environment.

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 9 of 19

https://cs.au.dk/~amoeller/spa/

ABSTRACT INTERPRETATION: small example (continued)
Exercise. This continues the exercise on slide 9 . Consider a programming language
L2 which extends L1 (itself extending the earlier L0):

x ∈ var ::= · · · (same as before)

n ∈ num ::= · · · (same as before)

e ∈ exp ::= x
∣∣ n
∣∣ e1 + e2

∣∣ e1 ∗ e2
∣∣ e1 − e2

∣∣ e1/e2
∣∣ if e1 then e2 else e3

where the additional operation symbol ‘/’ is to be interpreted in the usual way as ‘integer
division’. Again here, the evaluation of the conditional starts with the evaluation of e1; if e1

evaluates to any value 6= 0, then e2 is evaluated, otherwise e3 is evaluated.

1. Repeat Part 1 of the exercise on slide 9 , now extended to L2.

2. Repeat Part 2 of the exercise on slide 9 , extended to L2.

Hint: Since division by 0 is undefined, think of JeKstd as defining a partial (rather than
total) function from the set of states (var→ Z) to Z, and consider adding a new abstract
value ⊥ (for ‘undefined’) to the abstract domain, i.e., let SIGN⊥ , SIGN ∪ {⊥}. You also
need to define an abstract operation, call it ‘ite’, corresponding to if-then-else.

The abstract operation ‘�’ corresponding to ‘/’ is defined by a 5× 5 table (not 4× 4),

because SIGN⊥ contains 5 values. Similarly the tables for ‘⊕’, ‘⊗’, and ‘	’ are 5× 5.

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 10 of 19

ABSTRACT INTERPRETATION: small example (continued)
Exercise. This continues the exercise on slide 10 , specifically Part 2, which extends the
abstract interpretation of L0 and L1 to an abstract interpretation for L2. In this exercise,
we re-consider the language L2, but we want to define a finer abstract interpretation for
it, by adding new abstract values to SIGN⊥ to obtain a larger abstract domain SIGN

#
⊥ :

SIGN
#
⊥ , SIGN⊥ ∪ {one, pos#, neg#} where

‘one’ is the abstract value of the set {1} ,

‘pos#’ is the abstract value of the set {n ∈ Z|n > 0},

‘neg#’ is the abstract value of the set {n ∈ Z|n 6 0}.

Your task is to define the abstract operations ⊕, ⊗, 	, and �, each being of the form
SIGN

#
⊥ × SIGN

#
⊥ → SIGN

#
⊥ and each requiring a table of dimension 8× 8.

Hint: By introducing the new abstract value ‘pos#’ we are able to write the equality:

pos� pos = pos# instead of pos� pos = > .

The latter equality is less informative than the former. In the absence of ‘pos#’ only the
latter holds, and not pos� pos = pos , because if 0 < m < n then m/n = 0. The other

abstract values ‘one’ and ‘neg#’ are needed when we apply the other operators ⊕, ⊗,
and 	, to ‘pos#’.

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 11 of 19

ABSTRACT INTERPRETATION: lattices of abstract domains

The abstract domain for the exercise on slide 10 is pictured on the left,

and the abstract domain for the exercise on slide 11 is pictured on the right:

>

pos zero neg

⊥

>

pos# neg#

pos zero neg

one

⊥

Under the abstraction functions α1 : P(Z)→ SIGN⊥ and α2 : P(Z)→ SIGN
#
⊥

(defined on the next slide 13), every edge in the lattices of SIGN⊥ on the left

and SIGN
#
⊥ on the right, respectively, depicts the subset relation ‘⊆’.

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 12 of 19

abstraction functions and concretization functions

abstraction α1 : P(Z)→ SIGN⊥ and concretization γ1 : SIGN⊥ → P(Z):

α1(S) ,

⊥ if S = ∅,
zero if S = {0},
pos if S ⊆ {n ∈ Z|n > 0},
neg if S ⊆ {n ∈ Z|n < 0},
> otherwise.

γ1(a) ,

∅ if a = ⊥,
{0} if a = zero,

{n ∈ Z|n > 0} if a = pos,

{n ∈ Z|n < 0} if a = neg,

Z if a = >.

abstraction α2 : P(Z)→ SIGN
#
⊥ and concretization γ2 : SIGN

#
⊥ → P(Z):

α2(S) ,

⊥ if S = ∅,
zero if S = {0},
one if S = {1},
pos if S ⊆ {n ∈ Z|n > 0},
neg if S ⊆ {n ∈ Z|n < 0},
pos# if S ⊆ {n ∈ Z|n > 0},
neg# if S ⊆ {n ∈ Z|n 6 0},
> otherwise.

γ2(a) ,

∅ if a = ⊥,
{0} if a = zero,

{1} if a = one,

{n ∈ Z|n > 0} if a = pos,

{n ∈ Z|n < 0} if a = neg,

{n ∈ Z|n > 0} if a = pos#,

{n ∈ Z|n 6 0} if a = neg#,

Z if a = >.

(Read cases of α2 top-down because of the overlaps in cases 4+6 and 5+7.)
Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 13 of 19

Galois connections

If (C,⊆) and (A,v) are partially ordered sets , in particular lattices ,
and α : C→ A and γ : A→ C are a pair of functions such that:

1. γ ◦α is extensive, i.e., c ⊆ γ(α(c)) for all c ∈ C, and
2. α ◦ γ is reductive, i.e., α(γ(a)) v a for all a ∈ A,

then we call the pair (α, γ) a Galois connection .

Exercise. Show that the pairs (α1, γ1) and (α2, γ2) on slide 13 are each a
Galois connection.

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 14 of 19

relating CONCRETE and ABSTRACT interpretations

The following theorem expresses a consistency property of abstract interpretations –

also called a safety or soundness property – here stated for language L1 or L2, on

slides 9 and 10 respectively, and for any of the pairs (α, γ) on page 14 :

Theorem
For every expression e ∈ exp and every state σ : var→ Z,{

JeKstd σ
}
⊆ γ

(
JeKros σ

′
)

where σ′ ,
{

x 7→ α({σ(x)})
∣∣∣ x ∈ var

}
.

Exercise. Prove the preceding theorem.

Hint: For simplicity, first prove the theorem for L1, and then consider L2, and both
relative to the first pair (α1, γ1) at the top of page 13 .

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 15 of 19

relating CONCRETE and ABSTRACT interpretations

Exercise. A Galois insertion is a stronger relationship than a Galois connection .

The Galois connection (α, γ) forms a Galois insertion iff

I α(γ(a)) = a for every a in the abstract domain A, i.e., α ◦ γ is the identity on A.

Show that each of the pairs (α1, γ1) and (α2, γ2) on page 13 is a Galois insertion.

Exercise. Give an example of a Galois connection which is not a Galois insertion.

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 16 of 19

ABSTRACT INTERPRETATION: how to handle iteration
This builds on the material introduced in the exercises on slide 9 and 10 . Consider a

programming language L3 which extends L2 on slide 10 :

x ∈ var ::= · · · (same as before)

n ∈ num ::= · · · (same as before)

e ∈ exp ::= · · · (same as before)

C ∈ comm ::= x := e
∣∣ C1;C2

∣∣ if e then C1 else C2
∣∣ while e do C od

What is new here is an additional category in the syntax, namely ‘comm’ (for ‘command’).

The evaluation of the program phrase ‘while e do C od’ starts with the evaluation of e; if

the test e evaluates to any value 6= 0, then C is evaluated and the loop is executed

repeatedly, until e evaluates to 0.

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 17 of 19

ABSTRACT INTERPRETATION: how to handle iteration

I How should we understand the semantics JCKstd of a command C?

I Abstract value ‘⊥’ already represents ‘failure’ resulting from division by 0.
Should ‘⊥’ also represent the outcome of a diverging computation? Or should
these two kinds of failure be separated?

I We can handle the situation in one of two approaches:

1. We can choose to not distinguish between the two kinds of failure, and let
‘⊥’ in the abstract domain denote the outcome of either.

2. We can choose to deal with the two differently, by introducing a new value
wrong in the concrete domain denoting the outcome of failure from a division
by 0, and by taking JCKstd to be a partial function from states to states.

For simplicity, we choose the first approach – which we use in the next exercise.

Exercise. This extends the exercise on slide 10 to the language L3 on slide 17 :

1. Set up the inductive syntax-driven definition of the concrete semantics of L3.

2. Set up the inductive syntax-driven definition of the abstract semantics of L3.

Hint: We ask you to only set up the defining equations. One of the defining equations is
recursive, resulting from the presence of the while construct, which can be solved using
an appropriate fixed-point theorem. We do not ask you to solve the recursive equation.

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 18 of 19

(THIS PAGE INTENTIONALLY LEFT BLANK)

Assaf Kfoury, CS 511, Fall 2018, Handout 32 page 19 of 19

