CS 511, Fall 2018, Handout 33
 Limits of Formal Modeling in
 Propositional Logic and First-Order Logic

Assaf Kfoury

November 27, 2018

TWO KINDS OF LIMITS

- Complexity limits :

Expressiveness limits :

TWO KINDS OF LIMITS

- Complexity limits :
- Many properties we want to verify can be formally expressed in propositional logic and/or first-order logic and/or in some fragments thereof.
- In most real-world cases, however, they cannot be analyzed or verified by hand and we need to rely on automated or semi-automated tools.
- But before we do this, we need to know their complexity which, in some cases, may be beyond the most powerful tools currently available.
- Our formalization of a property may turn out to be such that its verification is feasible (e.g., linear or low-degree polynomial time) or unfeasible (e.g., exponential or double-exponential time or worse) - or even undecidable.
- Expressiveness limits :

TWO KINDS OF LIMITS

- Complexity limits :
- Many properties we want to verify can be formally expressed in propositional logic and/or first-order logic and/or in some fragments thereof.
- In most real-world cases, however, they cannot be analyzed or verified by hand and we need to rely on automated or semi-automated tools.
- But before we do this, we need to know their complexity which, in some cases, may be beyond the most powerful tools currently available.
- Our formalization of a property may turn out to be such that its verification is feasible (e.g., linear or low-degree polynomial time) or unfeasible (e.g., exponential or double-exponential time or worse) - or even undecidable.
- Expressiveness limits :
- What is the "weakest" or "least expressive" logic (e.g., propositional logic, or a fragment of it, in preference to first-order logic) in which we can formally express a given property?
- What are (realistic) examples of properties that are not expressible in first-order logic, let alone propositional logic?
- Are there tradeoffs between expressiveness and complexity? A "strong" or "more expressive" logic generally gives rise to formalizations of properties that are more difficult to verify, but not always.

PIGEON-HOLE PRINCIPLE (PHP) in FOL

- We already studied PHP in propositional logic - in the handout Formal Modeling with Propositional Logic (click here). ${ }^{1}$ We defined propositional WFF's:

$$
\varphi_{2}, \varphi_{3}, \ldots, \varphi_{n}, \ldots,
$$

where φ_{n} expresses PHP_{n}, i.e., PHP for the case of n pigeons.

[^0]
PIGEON-HOLE PRINCIPLE (PHP) in FOL

- We already studied PHP in propositional logic - in the handout Formal Modeling with Propositional Logic (click here). ${ }^{1}$ We defined propositional WFF's:

$$
\varphi_{2}, \varphi_{3}, \ldots, \varphi_{n}, \ldots
$$

where φ_{n} expresses PHP_{n}, i.e., PHP for the case of n pigeons.

- We now want a first-order sentence Ψ in the signature $\Sigma=\{R, c\}$ where R is a binary relation symbol and c is a constant symbol, such that:
Every structure \mathcal{M}_{n} of the form $\left(\{1,2, \ldots, n\}, R^{\mathcal{M}_{n}}, c^{\mathcal{M}_{n}}\right)$ is a model of Ψ and the interpretation of Ψ in \mathcal{M}_{n} expresses $P H P_{n}$.

[^1]
PIGEON-HOLE PRINCIPLE (PHP) in FOL

- We already studied PHP in propositional logic - in the handout Formal Modeling with Propositional Logic (click here). ${ }^{1}$ We defined propositional WFF's:

$$
\varphi_{2}, \varphi_{3}, \ldots, \varphi_{n}, \ldots
$$

where φ_{n} expresses PHP_{n}, i.e., PHP for the case of n pigeons.

- We now want a first-order sentence Ψ in the signature $\Sigma=\{R, c\}$ where R is a binary relation symbol and c is a constant symbol, such that:
Every structure \mathcal{M}_{n} of the form $\left(\{1,2, \ldots, n\}, R^{\mathcal{M}_{n}}, c^{\mathcal{M}_{n}}\right)$ is a model of Ψ and the interpretation of Ψ in \mathcal{M}_{n} expresses $P H P_{n}$.
- Here is a possible first-order formulation of Ψ :

$$
\Psi \triangleq(\forall x \exists y R(x, y)) \wedge(\forall x \neg R(x, c)) \rightarrow \exists v \exists w \exists y(\neg(v \doteq w) \wedge R(v, y) \wedge R(w, y))
$$

Note: If $(\forall x \neg R(x, c))$ is omitted to obtain a new sentence Ψ_{0}, there is a structure \mathcal{M}_{n} satisfying $(\forall x \exists y R(x, y))$ but not $\exists v \exists w \exists y(\neg(v \doteq w) \wedge R(v, y) \wedge R(w, y))$, in which case $\mathcal{M}_{n} \not \vDash \Psi_{0}$ and PHP_{n} is not enforced in \mathcal{M}_{n}.

- Advantage of a first-order formulation over a propositional formulation : one first-order WFF Ψ instead of infinitely many propositional WFF's $\left\{\varphi_{2}, \varphi_{3}, \ldots\right\}$

[^2]
PIGEON-HOLE PRINCIPLE (PHP) in FOL

- Exercise:

1. Translate Ψ into a propositional WFF ψ_{n} which depends on an additional parameter $n \geqslant 2$. (Ψ represents an infinite family of propositional WFF's, one ψ_{n} for every $n \geqslant 2$.)
Hint: Consider replacing every " \forall " by a " \bigwedge " and every " \exists " by a " \bigvee ".
2. Compare φ_{n} and ψ_{n}.

Hint: They are very close to each other.

- Exercise:

1. Use an automated proof-assistant (e.g., Isabelle, Coq, etc.) to establish that Ψ is valid.
2. Use a SAT solver to establish that each of φ_{2}, φ_{3}, and φ_{4} is valid.
3. Compare the performances in part 1 and part 2.

PIGEON-HOLE PRINCIPLE (PHP) in FOL

- Exercise:

1. Translate Ψ into a propositional WFF ψ_{n} which depends on an additional parameter $n \geqslant 2$. (Ψ represents an infinite family of propositional WFF's, one ψ_{n} for every $n \geqslant 2$.)
Hint: Consider replacing every " \forall " by a " \bigwedge " and every " \exists " by a " \bigvee ".
2. Compare φ_{n} and ψ_{n}.

Hint: They are very close to each other.

- Exercise:

1. Use an automated proof-assistant (e.g., Isabelle, Coq, etc.) to establish that Ψ is valid.
2. Use a SAT solver to establish that each of φ_{2}, φ_{3}, and φ_{4} is valid.
3. Compare the performances in part 1 and part 2.

- Fact: A resolution proof of φ_{n} or ψ_{n} is possible but does not help (bad news!). More precisely, any resolution proof of φ_{n} or ψ_{n} has size at least $\Omega\left(2^{n}\right)$.
- Fact: There are proofs of φ_{n} and ψ_{n} using what is called extended resolution (not covered this semester) which have size $\mathcal{O}\left(n^{4}\right)$.
- Fact: There are Hilbert-style proofs (not covered this semester) of φ_{n} and ψ_{n} which have size at most $\mathcal{O}\left(n^{20}\right)$ (not really good news!).

PIGEON-HOLE PRINCIPLE (PHP) in FOL - once more

- We define another first-order sentence Ψ^{\prime} in the signature $\Sigma=\{f, c\}$ where f is a unary function symbol and c is a constant symbol, such that:
Every structure \mathcal{N}_{n} of the form $\left(\{1,2, \ldots, n\}, f^{\mathcal{N}_{n}}, c^{\mathcal{N}_{n}}\right)$ is a model of Ψ^{\prime} and the interpretation of Ψ^{\prime} in \mathcal{N}_{n} expresses $P H P_{n}$.

PIGEON-HOLE PRINCIPLE (PHP) in FOL - once more

- We define another first-order sentence Ψ^{\prime} in the signature $\Sigma=\{f, c\}$ where f is a unary function symbol and c is a constant symbol, such that:
Every structure \mathcal{N}_{n} of the form $\left(\{1,2, \ldots, n\}, f^{\mathcal{N}_{n}}, c^{\mathcal{N}_{n}}\right)$ is a model of Ψ^{\prime} and the interpretation of Ψ^{\prime} in \mathcal{N}_{n} expresses $P H P_{n}$.
- Here is a possible first-order formulation of Ψ^{\prime} :

$$
\Psi^{\prime} \triangleq(\forall x . \neg(f(x) \doteq c)) \rightarrow \exists v \exists w(\neg(v \doteq w) \wedge f(v) \doteq f(w))
$$

how strong is first-order logic?

- Two very similar first-order sentences:

$$
\begin{aligned}
& \theta_{1} \triangleq \forall x \exists y(x<y \wedge \operatorname{prime}(y) \wedge \operatorname{prime}(y+2)) \\
& \theta_{2} \triangleq \forall x \exists y(\neg(x \doteq 0) \rightarrow(x<y) \wedge(y \leqslant 2 \times x) \wedge \operatorname{prime}(y))
\end{aligned}
$$

both to be interpreted in the structure $\mathcal{N} \triangleq(\mathbb{N} ; \times,+, 0,1)$ and where prime () is a unary predicate that tests whether its argument is a prime number. prime () is first-order definable in \mathcal{N}.

- θ_{1} formally expresses the Twin-Prime Conjecture, a long-standing open problem.
- θ_{2} formally expresses the Bertrand-Chebyshev Conjecture, which was shown to be true - by hand, before digital computers were invented! ${ }^{2}$
- In recent years, formal proofs of θ_{2} have been produced in several automated proof assistants (Isabelle, Coq, Metamath, Mizar, and perhaps others of which I am not aware), though all beyond the scope of this semester.

[^3]
how strong is first-order logic?

Theorem

1. The validity problem of first-order logic^{3} is semi-decidable but not decidable.
2. The unsatisfiability problem of first-order logic is semi-decidable but not decidable.

Proof.

1. Different ways of proving the semi-decidability of the validity problem. One way: Gilmore's algorithm in Handout 26 is a semi-decision procedure (details left to you).
One proof of the undecidability is in [LCS, page 133] which consists in reducing the (undecidable) PCP to the validity problem of FOL. A more direct proof of the undecidability reduces the Halting Problem for Turing machines to the validity problem of FOL (posted on the course website - click here).
2. This follows from part 1 because, for any first-order WFF φ, φ is valid iff $\neg \varphi$ is unsatisfiable.
Exercise: Give another proof (not based on Gilmore's algorithm) for the semi-decidability of the validity problem of FOL.
[^4]
how strong is first-order logic?

Theorem (Skolem-Lowenheim)

1. If φ is a first-order sentence such that, for every $n \geqslant 1$, there is a model of φ with at least n elements, then φ has an infinite model.
"First-order logic cannot enforce finiteness of models."
2. If φ is a first-order sentence which has a model (i.e., φ is satisfiable), then φ has a model with a countable universe.
"First-order logic cannot enforce uncountable models."

Proof.

1. A proof is given in [LCS, page 138].
2. A proof is a simple variation on the proof of Lemma 24 in the handout Compactness and Completeness of Propositional Logic and First-Order Logic click here. We omit the details.

how strong is first-order logic?

Theorem

There is no first-order WFF $\psi(x, y)$ with two free variables x and y, over the signature $\{R, \doteq\}$ where R is a binary predicate symbol, such that for every graph model $\mathcal{M}=\left(M, R^{\mathcal{M}}\right)$ and every $a, b \in M$, it holds that:

$$
\mathcal{M}, a, b \models \psi \quad \text { iff there is a path from } a \text { to } b
$$

"Reachibility in graphs is not first-order definable."

Proof.

One possible proof is in [LCS, page 138].

(THIS PAGE INTENTIONALLY LEFT BLANK)

[^0]: ${ }^{1}$ Reminder of what the PHP says: "If n pigeons sit in $(n-1)$ holes, then some hole contains more than one pigeon"

[^1]: ${ }^{1}$ Reminder of what the PHP says: "If n pigeons sit in $(n-1)$ holes, then some hole contains more than one pigeon"

[^2]: ${ }^{1}$ Reminder of what the PHP says: "If n pigeons sit in $(n-1)$ holes, then some hole contains more than one pigeon"

[^3]: ${ }^{2}$ A nice history of the Bertrand-Chebyshev Conjecture and its generalizations, and their increasingly simpler proofs, are presented in a Wikipedia article (click here).

[^4]: ${ }^{3}$ This is the decision problem that asks whether an arbitrary first-order WFF, or its universal closure as a sentence, is valid.

