CS 511, Fall 2018, Handout 33 Limits of Formal Modeling in Propositional Logic and First-Order Logic

Assaf Kfoury

November 27, 2018

Assaf Kfoury, CS 511, Fall 2018, Handout 33

TWO KINDS OF LIMITS

Complexity limits :

TWO KINDS OF LIMITS

Complexity limits :

- Many properties we want to verify can be formally expressed in propositional logic and/or first-order logic and/or in some fragments thereof.
- In most real-world cases, however, they cannot be analyzed or verified by hand and we need to rely on automated or semi-automated tools.
- But before we do this, we need to know their complexity which, in some cases, may be beyond the most powerful tools currently available.
- Our formalization of a property may turn out to be such that its verification is feasible (e.g., linear or low-degree polynomial time) or unfeasible (e.g., exponential or double-exponential time or worse) – or even undecidable.
- Expressiveness limits :

TWO KINDS OF LIMITS

Complexity limits :

- Many properties we want to verify can be formally expressed in propositional logic and/or first-order logic and/or in some fragments thereof.
- In most real-world cases, however, they cannot be analyzed or verified by hand and we need to rely on automated or semi-automated tools.
- But before we do this, we need to know their complexity which, in some cases, may be beyond the most powerful tools currently available.
- Our formalization of a property may turn out to be such that its verification is feasible (e.g., linear or low-degree polynomial time) or unfeasible (e.g., exponential or double-exponential time or worse) – or even undecidable.

Expressiveness limits :

- What is the "weakest" or "least expressive" logic (*e.g.*, propositional logic, or a fragment of it, in preference to first-order logic) in which we can formally express a given property?
- What are (realistic) examples of properties that are not expressible in first-order logic, let alone propositional logic?
- Are there tradeoffs between expressiveness and complexity? A "strong" or "more expressive" logic generally gives rise to formalizations of properties that are more difficult to verify, but not always.

We already studied PHP in propositional logic – in the handout Formal Modeling with Propositional Logic (click here).¹ We defined propositional WFF's:

 $\varphi_2, \varphi_3, \ldots, \varphi_n, \ldots,$

where φ_n expresses PHP_n, *i.e.*, PHP for the case of *n* pigeons.

¹Reminder of what the PHP says: "If n pigeons sit in (n - 1) holes, then some hole contains more than one pigeon"

We already studied PHP in propositional logic – in the handout Formal Modeling with Propositional Logic (click here).¹ We defined propositional WFF's:

 $\varphi_2, \varphi_3, \ldots, \varphi_n, \ldots,$

where φ_n expresses PHP_n, *i.e.*, PHP for the case of *n* pigeons.

• We now want a first-order sentence Ψ in the signature $\Sigma = \{R, c\}$ where *R* is a binary relation symbol and *c* is a constant symbol, such that:

Every structure \mathcal{M}_n of the form $(\{1, 2, ..., n\}, R^{\mathcal{M}_n}, c^{\mathcal{M}_n})$ is a model of Ψ and the interpretation of Ψ in \mathcal{M}_n expresses PHP_n.

¹Reminder of what the PHP says: "If n pigeons sit in (n - 1) holes, then some hole contains more than one pigeon"

We already studied PHP in propositional logic – in the handout Formal Modeling with Propositional Logic (click here).¹ We defined propositional WFF's:

 $\varphi_2, \varphi_3, \ldots, \varphi_n, \ldots,$

where φ_n expresses PHP_n, *i.e.*, PHP for the case of *n* pigeons.

• We now want a first-order sentence Ψ in the signature $\Sigma = \{R, c\}$ where *R* is a binary relation symbol and *c* is a constant symbol, such that:

Every structure \mathcal{M}_n of the form $(\{1, 2, \ldots, n\}, R^{\mathcal{M}_n}, c^{\mathcal{M}_n})$ is a model of Ψ and the interpretation of Ψ in \mathcal{M}_n expresses PHP_n.

• Here is a possible first-order formulation of Ψ :

$$\Psi \triangleq (\forall x \exists y R(x, y)) \land (\forall x \neg R(x, c)) \rightarrow \exists v \exists w \exists y (\neg (v \doteq w) \land R(v, y) \land R(w, y))$$

Note: If $(\forall x \neg R(x, c))$ is omitted to obtain a new sentence Ψ_0 , there is a structure \mathcal{M}_n satisfying $(\forall x \exists y R(x, y))$ but not $\exists v \exists w \exists y (\neg (v \doteq w) \land R(v, y) \land R(w, y))$, in which case $\mathcal{M}_n \not\models \Psi_0$ and PHP_n is not enforced in \mathcal{M}_n .

Advantage of a first-order formulation over a propositional formulation : one first-order WFF Ψ instead of infinitely many propositional WFF's {φ₂, φ₃,...}

¹ Reminder of what the PHP says: "If n pigeons sit in (n - 1) holes, then some hole contains more than one pigeon"

Exercise:

Translate Ψ into a propositional WFF ψ_n which depends on an additional parameter n ≥ 2. (Ψ represents an infinite family of propositional WFF's, one ψ_n for every n ≥ 2.)

Hint: Consider replacing every " \forall " by a " \wedge " and every " \exists " by a " \vee ".

2. Compare φ_n and ψ_n . *Hint*: They are very close to each other.

Exercise:

- 1. Use an automated proof-assistant (*e.g.*, Isabelle, Coq, etc.) to establish that Ψ is valid.
- 2. Use a SAT solver to establish that each of φ_2 , φ_3 , and φ_4 is valid.
- 3. Compare the performances in part 1 and part 2.

Exercise:

1. Translate Ψ into a propositional WFF ψ_n which depends on an additional parameter $n \ge 2$. (Ψ represents an infinite family of propositional WFF's, one ψ_n for every $n \ge 2$.)

Hint: Consider replacing every " \forall " by a " \bigwedge " and every " \exists " by a " \bigvee ".

2. Compare φ_n and ψ_n . *Hint*: They are very close to each other.

Exercise:

- 1. Use an automated proof-assistant (e.g., Isabelle, Coq, etc.) to establish that Ψ is valid.
- 2. Use a SAT solver to establish that each of φ_2 , φ_3 , and φ_4 is valid.
- 3. Compare the performances in part 1 and part 2.
- Fact: A resolution proof of φ_n or ψ_n is possible but does not help (bad news!). More precisely, any resolution proof of φ_n or ψ_n has size at least $\Omega(2^n)$.
- Fact: There are proofs of φ_n and ψ_n using what is called extended resolution (not covered this semester) which have size $\mathcal{O}(n^4)$.

Fact: There are Hilbert-style proofs (not covered this semester) of φ_n and ψ_n which have size at most $\mathcal{O}(n^{20})$ (not really good news!).

PIGEON-HOLE PRINCIPLE (PHP) in FOL – once more

• We define another first-order sentence Ψ' in the signature $\Sigma = \{f, c\}$ where f is a unary function symbol and c is a constant symbol, such that:

Every structure \mathcal{N}_n of the form $(\{1, 2, ..., n\}, f^{\mathcal{N}_n}, c^{\mathcal{N}_n})$ is a model of Ψ' and the interpretation of Ψ' in \mathcal{N}_n expresses PHP_n.

PIGEON-HOLE PRINCIPLE (PHP) in FOL – once more

• We define another first-order sentence Ψ' in the signature $\Sigma = \{f, c\}$ where *f* is a unary function symbol and *c* is a constant symbol, such that:

Every structure \mathcal{N}_n of the form $(\{1, 2, ..., n\}, f^{\mathcal{N}_n}, c^{\mathcal{N}_n})$ is a model of Ψ' and the interpretation of Ψ' in \mathcal{N}_n expresses PHP_n.

• Here is a possible first-order formulation of Ψ' :

$$\Psi' \triangleq (\forall x. \neg (f(x) \doteq c)) \rightarrow \exists v \exists w (\neg (v \doteq w) \land f(v) \doteq f(w))$$

Two very similar first-order sentences:

$$\begin{aligned} \theta_1 &\triangleq \forall x \exists y \left(x < y \land prime(y) \land prime(y+2) \right) \\ \theta_2 &\triangleq \forall x \exists y \left(\neg(x \doteq 0) \rightarrow (x < y) \land (y \leqslant 2 \times x) \land prime(y) \right) \end{aligned}$$

both to be interpreted in the structure $\mathcal{N} \triangleq (\mathbb{N}; \times, +, 0, 1)$ and where *prime()* is a unary predicate that tests whether its argument is a prime number. *prime()* is first-order definable in \mathcal{N} .

- θ_1 formally expresses the *Twin-Prime Conjecture*, a long-standing open problem.
- θ₂ formally expresses the Bertrand-Chebyshev Conjecture, which was shown to be true – by hand, before digital computers were invented!²
- In recent years, formal proofs of θ₂ have been produced in several automated proof assistants (Isabelle, Coq, Metamath, Mizar, and perhaps others of which I am not aware), though all beyond the scope of this semester.

²A nice history of the *Bertrand-Chebyshev Conjecture* and its generalizations, and their increasingly simpler proofs, are presented in a Wikipedia article (click here).

Theorem

- 1. The validity problem of first-order logic³ is semi-decidable but not decidable.
- 2. The unsatisfiability problem of first-order logic is semi-decidable but not decidable.

Proof.

1. Different ways of proving the semi-decidability of the validity problem. One way: Gilmore's algorithm in Handout 26 is a semi-decision procedure (details left to you).

One proof of the undecidability is in [LCS, page 133] which consists in reducing the (undecidable) PCP to the validity problem of FOL. A more direct proof of the undecidability reduces the Halting Problem for Turing machines to the validity problem of FOL (posted on the course website – click here).

2. This follows from part 1 because, for any first-order WFF φ , φ is valid iff $\neg \varphi$ is unsatisfiable.

Exercise: Give another proof (not based on Gilmore's algorithm) for the semi-decidability of the validity problem of FOL.

³This is the decision problem that asks whether an arbitrary first-order WFF, or its universal closure as a sentence, is valid.

Theorem (Skolem-Lowenheim)

1. If φ is a first-order sentence such that, for every $n \ge 1$, there is a model of φ with at least n elements, then φ has an infinite model.

"First-order logic cannot enforce finiteness of models."

2. If φ is a first-order sentence which has a model (i.e., φ is satisfiable), then φ has a model with a countable universe.

"First-order logic cannot enforce uncountable models."

Proof.

- 1. A proof is given in [LCS, page 138].
- A proof is a simple variation on the proof of Lemma 24 in the handout *Compactness and Completeness of Propositional Logic and First-Order Logic* – click here. We omit the details.

Theorem

There is no first-order WFF $\psi(x, y)$ with two free variables x and y, over the signature $\{R, \doteq\}$ where R is a binary predicate symbol, such that for every graph model $\mathcal{M} = (M, R^{\mathcal{M}})$ and every $a, b \in M$, it holds that:

 $\mathcal{M}, a, b \models \psi$ iff there is a path from a to b

"Reachibility in graphs is not first-order definable."

Proof.

One possible proof is in [LCS, page 138].

(THIS PAGE INTENTIONALLY LEFT BLANK)