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Origins and background

I As it name indicates, a SAT solver deals with satisfiability of propositional WFF’s.

I Like the tableau method and the resolution method, SAT solvers are
refutation-based, i.e., they try to find reasons why a WFF ϕ is a logical
contradiction.

I A SAT solver always terminates; if it terminates in what is called “failed state”,
then ϕ is a logical contradiction, otherwise ϕ is a satisfiable WFF.

I Like the tableaux method and the resolution method, a SAT solver as a decision
procedure is only refutation complete, not complete, though this does not prevent
us from using a SAT solver to decide semantic entailment in general.

I Refutation completeness of a SAT solver means that, if ψ is an unsatisfiable WFF
(the last column in the truth-table of ψ are all F’s, expressed by the semantic
entailment ψ |= ⊥ or |= ψ → ⊥), then a SAT solver will confirm it by a terminating
process of symbolic manipulation (pattern-matching, backtracking, term-rewriting)
ending with “failed state” (which we can express by writing ψ `SAT solver ⊥).

I There are many restrictions and extensions of the satisfiability problem (not
covered in this course), some efficiently solvable and some just as hard (or harder)
to solve as the unrestricted satisfiability problem. Click here for a survey.
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Preprocessing required by SAT solvers

I SAT solvers, like the resolution method but unlike the tableaux method, require that
an input WFF ϕ be in CNF.

I Typically the input WFF ϕ in CNF is written as a finite set of clauses, i.e.,
ϕ = {C1, . . . ,Cn} where every Ci is a finite disjunction of literals (propositional
variables and negated propositional variables).

I A SAT solver can start from a WFF ϕ in CNF, rather than in some other special
form (e.g., DNF), because ϕ can be translated into an equisatisfiable WFF ϕ′

efficiently, specifically, in linear time – see pp 3-6 in Handout 11.

(We already know that converting a propositional WFF ψ into an equivalent DNF ψ′

is a NP-hard problem. See Handout 06, the slides with heading “Why DNF?”, and
also click here . But how about instead converting a propositional WFF ψ into an

equisatisfiable, not necessarily equivalent, DNF ψ′? No, it is a bad idea .)

Exercise: Show it is unlikely we will ever find an algorithm to transform an arbitrary
propositional WFF ψ into an equisatisfiable DNF ψ′ efficiently – unless P = NP.

Hint: Satisfiability of a DNF can be carried out in low-degree polynomial time.

I Depending on the underlying algorithm and data structures it uses, a SAT solver
requires further preprocessing, and also inprocessing, of the input WFF ϕ for the
purpose of speeding up its execution.
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Two main approaches to SAT solvers

1. SAT solvers based on stochastic search: The solver first guesses a full
assignment (also called full valuation), i.e., an assignment of truth-values to all
propositional atoms. If the WFF evaluates to F under this assignment, it starts to
flip truth-values of the atoms according to some heuristics. Typically, it counts the
number of unsatisfied clauses and chooses the flip that minimizes this number.

2. SAT solvers based on exhaustive search: The solver traverses a binary tree, in
which internal nodes are partial valuations and leaves are full valuations, and
repeatedly backtracks in search of a satisfying full valuation.

SAT solvers based on exhaustive search use what is known as the DPLL
procedure, or a refined and more efficient version of the original DPLL procedure.

The acronym “DPLL” stands for Martin Davis (1928-), Hilary Putnam (1926-2016),
George Logemann (1938-2012), and Donald Loveland (1934-) – the four
mathematical logicians and computer scientists behind the early development of
the procedure in the 1960’s and the 1970’s.

Davis and Putnam here are the same who introduced the resolution method and,
naturally enough, the DPLL procedure can be viewed an an extension and
refinement of the resolution method.
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Focus on DPLL

I The rest of this handout is on SAT solvers based on exhaustive search, i.e., based
on the DPLL procedure or one of its many variants.

I Good reason for this: Most modern SAT solvers are based on exhaustive search.

I I choose a presentation in two parts:

1. What I call the “Classical DPLL” procedure, which explains the basic DPLL
approach.

More than one way of doing this. My presentation is based on:
R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT Modulo
Theories”, Journal of the ACM, Vol. 53, No. 6, November 2006, pp. 937-977.

2. What I call “Modern Extensions of Classical DPLL” (some of them, not all of
them), which explains ways that make the classical procedure perform more
efficiently.
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Classical DPLL Procedure: What Is a Partial Valuation?

I We formulate the Classical DPLL procedure as a transition system consisting
of 5 transition rules, which are used to operate over a domain of states.

I The notion of a state requires a preliminary definition of partial valuation.

Definition
I If ϕ is a propositional WFF, then a partial valuation (or model) M for ϕ is a an

assignment of truth values to some (and possibly – but not necessarily – to all) the
propositional atoms in ϕ.

I If M is a partial valuation for ϕ, we write M as a sequence of atoms or negated
atoms occurring in ϕ.

I For example, if ϕ := ¬
(
(q1 ∨ ¬q2) ∧ q3

)
, then a partial valuation M for ϕ may be

the sequence ¬q1 q3 meaning that M assigns F to q1 and T to q3.
Fact: In this example, M can be extended to a total valuation that satisfies ϕ by
assigning T to q2.

I Another partial valutation M′ for ϕ := ¬
(
(q1 ∨ ¬q2) ∧ q3

)
may be the sequence

q1 q3 meaning that M assigns T to both q1 and q3.
Fact: M′ cannot be extended to a total valuation that satisfies ϕ.
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Classical DPLL Procedure: What Is a State?

Definition
I A state in the Classical DPLL is a pair of the form M‖ϕ where ϕ is a

propositional WFF in CNF and M is a partial valuation for ϕ.

I For example, a state of Classical DPLL may look like:

p1 p2 ¬q1
∥∥ { p2, ¬p1 ∨ ¬q1, ¬p1 ∨ q2, q1 ∨ ¬q2 ∨ p1,

¬p2 ∨ p1 ∨ ¬q3, ¬p1 ∨ p2, q3 ∨ p2 }

where
I the partial valuation (left of “‖”) assigns T to p1, T to p2, and F to q1,

I the CNF (right of “‖”) is here written as a set of 7 clauses.

I Fact: In the preceding example, the partial valuation (left of “‖”) can be
extended to a total valuation, namely, “p1 p2 ¬q1 q2”, that satisfies the CNF
(right of “‖”).
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Classical DPLL Procedure: 5 Transition Rules
UnitPropagate

M‖ ϕ ∪ {C ∨ `} =⇒ M ` ‖ ϕ ∪ {C ∨ `} if M |= ¬C and

` is undefined inM.

PureLiteral

M‖ ϕ =⇒ M ` ‖ ϕ if ` occurs in a clause of ϕ,

¬` occurs in no clause of ϕ,

and ` is undefined inM.

Decide

M‖ ϕ =⇒ M `d ‖ ϕ if ` or ¬` occurs in a clause of ϕ

and ` is undefined inM.

Fail

M‖ ϕ ∪ {C} =⇒ FailState if M |= ¬C and

M contains no decision literals.

Backtrack

M `dN ‖ ϕ ∪ {C} =⇒ M¬` ‖ ϕ ∪ {C} if M `dN |= ¬C and

N contains no decision literals.
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Classical DPLL Procedure: Example

Below is a derivation by Classical DPLL. For better readibility:

I We denote the atoms q1, q2, q3, . . . by their indeces 1, 2, 3, . . ..

I We denote the negation ¬qk by k̄.

∅ ‖ 1̄ ∨ 2̄, 2 ∨ 3, 1̄ ∨ 3̄ ∨ 4, 2 ∨ 3̄ ∨ 4̄, 1 ∨ 4 =⇒ (Decide)

1d ‖ 1̄ ∨ 2̄, 2 ∨ 3, 1̄ ∨ 3̄ ∨ 4, 2 ∨ 3̄ ∨ 4̄, 1 ∨ 4 =⇒ (UnitPropagate)

1d 2̄ ‖ 1̄ ∨ 2̄, 2 ∨ 3, 1̄ ∨ 3̄ ∨ 4, 2 ∨ 3̄ ∨ 4̄, 1 ∨ 4 =⇒ (UnitPropagate)

1d 2̄ 3 ‖ 1̄ ∨ 2̄, 2 ∨ 3, 1̄ ∨ 3̄ ∨ 4, 2 ∨ 3̄ ∨ 4̄, 1 ∨ 4 =⇒ (UnitPropagate)

1d 2̄ 3 4 ‖ 1̄ ∨ 2̄, 2 ∨ 3, 1̄ ∨ 3̄ ∨ 4, 2 ∨ 3̄ ∨ 4̄, 1 ∨ 4 =⇒ (Backtrack)

1̄ ‖ 1̄ ∨ 2̄, 2 ∨ 3, 1̄ ∨ 3̄ ∨ 4, 2 ∨ 3̄ ∨ 4̄, 1 ∨ 4 =⇒ (UnitPropagate)

1̄ 4 ‖ 1̄ ∨ 2̄, 2 ∨ 3, 1̄ ∨ 3̄ ∨ 4, 2 ∨ 3̄ ∨ 4̄, 1 ∨ 4 =⇒ (Decide)

1̄ 4 3̄d ‖ 1̄ ∨ 2̄, 2 ∨ 3, 1̄ ∨ 3̄ ∨ 4, 2 ∨ 3̄ ∨ 4̄, 1 ∨ 4 =⇒ (UnitPropagate)

1̄ 4 3̄d 2 ‖ 1̄ ∨ 2̄, 2 ∨ 3, 1̄ ∨ 3̄ ∨ 4, 2 ∨ 3̄ ∨ 4̄, 1 ∨ 4
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Classical DPLL Procedure

Definition

A state S is a final state if one of two conditions holds:

1. S is the token “FailState”,

2. S is of the formM ‖ ϕ whereM is a total valuation for the CNF ϕ.

Theorem

Let ϕ be a WFF in CNF. Then:

1. Every derivation by Classical DPLL which starts with the state ∅ ‖ ϕ always terminates with
a final state, i.e.:

∅ ‖ ϕ =⇒ S1 =⇒ · · · =⇒ Sn

for some n > 1 and where Sn is a final state.

2. If the final state Sn is of the formM ‖ ϕ, then ϕ is satisfiable and the total valuationM is a
model of ϕ.

3. If the final state Sn is the token “FailState”, then ϕ is unsatisfiable.

Proof.
Left to you.
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Modern Extensions of the DPLL Procedure

I Modern SAT solvers are based on the classical DPLL procedure, in which they
introduce several modifications for efficiency.

I Among the efficiencies introduced in modern SAT solvers:

I Rule PureLiteral is used as a pre-processing step and excluded from the
rules driving the solver, i.e., it is applied repeatedly before all other rules until
it cannot be applied, after which it is not used.

I Rule Backtrack is replaced by a more general and powerful backtracking
mechanism, the so-called Backjump rule.

I . . . and other efficiency modifications.
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Modern Extensions of the DPLL Procedure

I A basic modern SAT solver omits the rule PureLiteral from the Classical DPLL procedure, but
includes the 3 rules:

UnitPropagate, Decide, and Fail (as before),

together with (at least) the new rule Backjump instead of Backtrack.

I Backjump

M `dN ‖ ϕ ∪ {C} =⇒ M `′ ‖ ϕ ∪ {C}

if M `dN |= ¬C and there is some clause C′ ∨ `′ such that:

1. ϕ ∪ {C} |= C′ ∨ `′,

2. M |= ¬C′,

3. `′ is undefined inM, and

4. `′ or ¬`′ occurs in ϕ or inM `dN .

I Although Backjump is more efficient than Backtrack, it is a little more difficult to understand.1

1
If you are interested, an examination is in R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT Modulo Theories”, Journal of the ACM, Vol.

53, No. 6, November 2006, pp. 937-977.
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3. `′ is undefined inM, and

4. `′ or ¬`′ occurs in ϕ or inM `dN .

I Although Backjump is more efficient than Backtrack, it is a little more difficult to understand.1

1
If you are interested, an examination is in R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT Modulo Theories”, Journal of the ACM, Vol.

53, No. 6, November 2006, pp. 937-977.
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Modern Extensions of the DPLL Procedure
I For efficiency, it turns out that Backjump works even better in the presence of two

(non-essential, but more helpful for backtracking) rules:

Forget and Learn

Forget

M‖ ϕ ∪ {C} =⇒ M‖ ϕ if ϕ |= C

Learn

M‖ ϕ =⇒ M‖ ϕ ∪ {C} if ϕ |= C and

each atom of C occurs in ϕ or inM

I Although the soundness of Forget and Learn is relatively easy to understand, i.e., “their
presence does not turn an unsatisfiable WFF into a satisfiable WFF,” it is more difficult to
understand why they improve efficiency (in conjunction with Backjump).2

2
Again, if you are interested, an examination is in R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT Modulo Theories”, Journal of the ACM,

Vol. 53, No. 6, November 2006, pp. 937-977.
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