
CS 511, Fall 2018, Handout 36

Second Order Logic

Assaf Kfoury

5 December 2018

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 1 of 38

example

I Let ϕ , ∃y
(

P(y)→ ∀x P(x)
)

ϕ is a first-order sentence over the vocabulary/signature Σ = {P}.

Is ϕ semantically valid (true in every model) or, equivalently,
formally provable?

I Yes, it is, no matter the interpretation of the predicate symbol P.

So why not consider instead the formula ψ , ∀Pϕ?

ψ is no longer first-order, but a second-order sentence.

I Do we have a formal semantics for second-order logic?

Do we have a formal proof theory / deductive system for
second-order logic?

If the answer is yes to both questions, do we a have
soundness-and-completeness theorem for second-order logic?

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 2 of 38

example

I Let ϕ , ∃y
(

P(y)→ ∀x P(x)
)

ϕ is a first-order sentence over the vocabulary/signature Σ = {P}.

Is ϕ semantically valid (true in every model) or, equivalently,
formally provable?

I Yes, it is, no matter the interpretation of the predicate symbol P.

So why not consider instead the formula ψ , ∀Pϕ?

ψ is no longer first-order, but a second-order sentence.

I Do we have a formal semantics for second-order logic?

Do we have a formal proof theory / deductive system for
second-order logic?

If the answer is yes to both questions, do we a have
soundness-and-completeness theorem for second-order logic?

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 3 of 38

example

I Let ϕ , ∃y
(

P(y)→ ∀x P(x)
)

ϕ is a first-order sentence over the vocabulary/signature Σ = {P}.

Is ϕ semantically valid (true in every model) or, equivalently,
formally provable?

I Yes, it is, no matter the interpretation of the predicate symbol P.

So why not consider instead the formula ψ , ∀Pϕ?

ψ is no longer first-order, but a second-order sentence.

I Do we have a formal semantics for second-order logic?

Do we have a formal proof theory / deductive system for
second-order logic?

If the answer is yes to both questions, do we a have
soundness-and-completeness theorem for second-order logic?

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 4 of 38

from first-order to second-order logic

Given a vocabulary Σ = P ∪ F ∪ C as before –

P is a collection of predicate symbols,
F a collection of function symbols,
C a collection of constant symbols –

we go from the syntax and formation rules of first-order logic to
second-order logic by adding:

I predicate variables: X1,X2, . . . each with a fixed arity n > 1.
I function variables: F1,F2, . . . each with a fixed arity n > 1.

The definition of a modelM proceeds as in Handout 17, except
that now an environment (or look-up table) ` must assign a
meaning to predicate variables and function variables, in addition
to individual variables.

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 5 of 38

from first-order to second-order logic

Given a vocabulary Σ = P ∪ F ∪ C as before –

P is a collection of predicate symbols,
F a collection of function symbols,
C a collection of constant symbols –

we go from the syntax and formation rules of first-order logic to
second-order logic by adding:

I predicate variables: X1,X2, . . . each with a fixed arity n > 1.
I function variables: F1,F2, . . . each with a fixed arity n > 1.

The definition of a modelM proceeds as in Handout 17, except
that now an environment (or look-up table) ` must assign a
meaning to predicate variables and function variables, in addition
to individual variables.

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 6 of 38

from first-order to second-order logic

The only new features in the definition of satisfaction deal with the
second-order quantifiers – see Handout 17:

I let X be a n-ary predicate variable, for some n > 1,

M, ` |= ∀X ϕ iffM, `[X 7→ R] |= ϕ for every R ⊆ A× · · · × A︸ ︷︷ ︸
n

I let F be a n-ary function variable, for some n > 1,

M, ` |= ∀F ϕ iffM, `[F 7→ f] |= ϕ for every f : A× · · · × A︸ ︷︷ ︸
n

→ A

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 7 of 38

semantic entailment, semantic validity, satisfiability
Let ϕ be a second-order WFF . Similar to 1st order logic, we say:

I WFF ϕ is satisfiable iff there are someM and ` such thatM, ` |= ϕ

I WFF ϕ is semantically valid iff for allM and ` it holds thatM, ` |= ϕ

I If ϕ is a closed second-order WFF, we writeM |= ϕ instead ofM, ` |= ϕ

Let Γ be a set of second-order WFF’s :

I Γ is satisfiable iff there are someM and ` s.t.M, ` |= ϕ for every ϕ ∈ Γ

I semantic entailment: Γ |= ψ iff for everyM and every `, it holds that
M, ` |= Γ impliesM, ` |= ψ

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 8 of 38

semantic entailment, semantic validity, satisfiability
Let ϕ be a second-order WFF . Similar to 1st order logic, we say:

I WFF ϕ is satisfiable iff there are someM and ` such thatM, ` |= ϕ

I WFF ϕ is semantically valid iff for allM and ` it holds thatM, ` |= ϕ

I If ϕ is a closed second-order WFF, we writeM |= ϕ instead ofM, ` |= ϕ

Let Γ be a set of second-order WFF’s :

I Γ is satisfiable iff there are someM and ` s.t.M, ` |= ϕ for every ϕ ∈ Γ

I semantic entailment: Γ |= ψ iff for everyM and every `, it holds that
M, ` |= Γ impliesM, ` |= ψ

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 9 of 38

soundness and completeness for second-order logic ???

I There are several deductive systems for second-order logic,
but none can be complete w.r.t. second-order semantics.
(Not shown in this handout.)

I At a minimum, each of these deductive systems is sound, i.e., any
second-order WFF which is formally derivable is semantically valid.
(Not shown in this handout.)

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 10 of 38

examples (modeling in second-order logic)

I “A well-ordering is an ordering 6 such that
every non-empty set has a least element w.r.t. 6”

I From Handout 18, page 8: Can first-order logic specify a well-ordering?

I Second-order logic can express the well-ordering property:

ϕ , ∀X
(
∃y X(y)→ ∃v

(
X(v) ∧ ∀w (X(w)→ v 6 w)

))
I Fact (not proved here): The set of sentences

{ϕ} ∪ Th(N1)

defines N1 (and every structure which is an expansion of N1)
up to isomorphism, where N1 , (N, 0, S, <) in Handout 23.

I Fact (not proved here): First-order logic cannot specify the well-ordering
property, because there are non-isomorphic models of Th(N1), some of
which are well-ordered and some are not well-ordered.

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 11 of 38

examples (modeling in second-order logic)

I “A well-ordering is an ordering 6 such that
every non-empty set has a least element w.r.t. 6”

I From Handout 18, page 8: Can first-order logic specify a well-ordering?

I Second-order logic can express the well-ordering property:

ϕ , ∀X
(
∃y X(y)→ ∃v

(
X(v) ∧ ∀w (X(w)→ v 6 w)

))

I Fact (not proved here): The set of sentences

{ϕ} ∪ Th(N1)

defines N1 (and every structure which is an expansion of N1)
up to isomorphism, where N1 , (N, 0, S, <) in Handout 23.

I Fact (not proved here): First-order logic cannot specify the well-ordering
property, because there are non-isomorphic models of Th(N1), some of
which are well-ordered and some are not well-ordered.

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 12 of 38

examples (modeling in second-order logic)

I “A well-ordering is an ordering 6 such that
every non-empty set has a least element w.r.t. 6”

I From Handout 18, page 8: Can first-order logic specify a well-ordering?

I Second-order logic can express the well-ordering property:

ϕ , ∀X
(
∃y X(y)→ ∃v

(
X(v) ∧ ∀w (X(w)→ v 6 w)

))
I Fact (not proved here): The set of sentences

{ϕ} ∪ Th(N1)

defines N1 (and every structure which is an expansion of N1)
up to isomorphism, where N1 , (N, 0, S, <) in Handout 23.

I Fact (not proved here): First-order logic cannot specify the well-ordering
property, because there are non-isomorphic models of Th(N1), some of
which are well-ordered and some are not well-ordered.

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 13 of 38

examples (modeling in second-order logic)

I A second-order sentence satisfied by a structure M iff
the domain/universe of M is infinite:1

ψ , ∃P
(
∀x ∀y∀z

(
P(x, y) ∧ P(y, z) → P(x, z)

)
“P is transitive”

∧ ∀x
(
¬P(x, x)

)
“P is not reflexive”

∧ ∀x ∃y P(x, y)
)

“every x is s.t. x P−→ y for some y”

I A second-order sentence satisfied by a model M iff
the domain of M is finite:

¬ψ

1By definition, the universe ofM, is a non-empty set. Hence, ψ cannot be vacuously true,
because all models of ψ have non-empty universes.

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 14 of 38

examples (modeling in second-order logic)

I A second-order sentence satisfied by a structure M iff
the domain/universe of M is infinite:1

ψ , ∃P
(
∀x ∀y∀z

(
P(x, y) ∧ P(y, z) → P(x, z)

)
“P is transitive”

∧ ∀x
(
¬P(x, x)

)
“P is not reflexive”

∧ ∀x ∃y P(x, y)
)

“every x is s.t. x P−→ y for some y”

I A second-order sentence satisfied by a model M iff
the domain of M is finite:

¬ψ

1By definition, the universe ofM, is a non-empty set. Hence, ψ cannot be vacuously true,
because all models of ψ have non-empty universes.

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 15 of 38

compactness and completeness fail for second-order logic

Compactness Theorem for First-Order
Let Γ be a set of first-order sentences.

1. If every finite subset of Γ is satisfiable, then so is Γ.

2. If every finite subset of Γ is consistent, then so is Γ.

Counter-Example for Second-Order Compactness

For every n > 1, define the first-order sentence θn by:

θn , “there are at least n distinct elements”

Consider the set of sentences:

∆ = {¬ψ} ∪ {θ1, θ2, θ3, ...}

Every finite subset of ∆ is satisfiable, while ∆ is unsatisfiable.

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 16 of 38

compactness and completeness fail for second-order logic

Compactness Theorem for First-Order
Let Γ be a set of first-order sentences.

1. If every finite subset of Γ is satisfiable, then so is Γ.

2. If every finite subset of Γ is consistent, then so is Γ.

Counter-Example for Second-Order Compactness

For every n > 1, define the first-order sentence θn by:

θn , “there are at least n distinct elements”

Consider the set of sentences:

∆ = {¬ψ} ∪ {θ1, θ2, θ3, ...}

Every finite subset of ∆ is satisfiable, while ∆ is unsatisfiable.

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 17 of 38

compactness and completeness fail for second-order logic

I There are deductive systems (i.e., formal proof theories) for second-order
logic, but none can be complete (for the standard semantics).

In contrast to first-order logic:
“There are deductive systems for first-order logic which are complete.”

I There are sets Γ of second-order sentences which, although consistent
(i.e., ⊥ cannot be formally deduced from Γ), do not have models.

In contrast to first-order logic:
“Every consistent set of first-order sentences has a model.”

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 18 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I “A Hamiltonian path is a path that visits every node exactly once”

ϕ , ∃P
(

“P is a linear order” ∧ ∀x∀y (“y = x + 1” → R(x, y))
)

ϕ , ∃P
(
ψ1(P) ∧ ∀x∀y (ψ2(P, x, y) → R(x, y))

)
ψ1(P) makes predicate-variable P a linear order:

ψ1(P) , ∀x P(x, x) ∧ reflexivity

∀x∀y∀z
(
P(x, y) ∧ P(y, z) → P(x, z)

)
∧ transitivity

∀x∀y
(
P(x, y) ∧ P(y, x) → x .

= y
)
∧ anti-symmetry

∀x∀y
(
P(x, y) ∨ P(y, x)

)
totality

ψ2(P, x, y) is a WFF with free predicate-variable P of arity 2 and first-order
variables x and y, which makes y the successor of x in the linear order P:

ψ2(P, x, y) , ¬(x .
= y)∧P(x, y)∧∀z

(
P(x, z)∧P(z, y) → (x .

= z∨ y .
= z)

)

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 19 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I “A Hamiltonian path is a path that visits every node exactly once”

ϕ , ∃P
(

“P is a linear order” ∧ ∀x∀y (“y = x + 1” → R(x, y))
)

ϕ , ∃P
(
ψ1(P) ∧ ∀x∀y (ψ2(P, x, y) → R(x, y))

)
ψ1(P) makes predicate-variable P a linear order:

ψ1(P) , ∀x P(x, x) ∧ reflexivity

∀x∀y∀z
(
P(x, y) ∧ P(y, z) → P(x, z)

)
∧ transitivity

∀x∀y
(
P(x, y) ∧ P(y, x) → x .

= y
)
∧ anti-symmetry

∀x∀y
(
P(x, y) ∨ P(y, x)

)
totality

ψ2(P, x, y) is a WFF with free predicate-variable P of arity 2 and first-order
variables x and y, which makes y the successor of x in the linear order P:

ψ2(P, x, y) , ¬(x .
= y)∧P(x, y)∧∀z

(
P(x, z)∧P(z, y) → (x .

= z∨ y .
= z)

)

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 20 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I “A Hamiltonian path is a path that visits every node exactly once”

ϕ , ∃P
(

“P is a linear order” ∧ ∀x∀y (“y = x + 1” → R(x, y))
)

ϕ , ∃P
(
ψ1(P) ∧ ∀x∀y (ψ2(P, x, y) → R(x, y))

)

ψ1(P) makes predicate-variable P a linear order:

ψ1(P) , ∀x P(x, x) ∧ reflexivity

∀x∀y∀z
(
P(x, y) ∧ P(y, z) → P(x, z)

)
∧ transitivity

∀x∀y
(
P(x, y) ∧ P(y, x) → x .

= y
)
∧ anti-symmetry

∀x∀y
(
P(x, y) ∨ P(y, x)

)
totality

ψ2(P, x, y) is a WFF with free predicate-variable P of arity 2 and first-order
variables x and y, which makes y the successor of x in the linear order P:

ψ2(P, x, y) , ¬(x .
= y)∧P(x, y)∧∀z

(
P(x, z)∧P(z, y) → (x .

= z∨ y .
= z)

)

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 21 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I “A Hamiltonian path is a path that visits every node exactly once”

ϕ , ∃P
(

“P is a linear order” ∧ ∀x∀y (“y = x + 1” → R(x, y))
)

ϕ , ∃P
(
ψ1(P) ∧ ∀x∀y (ψ2(P, x, y) → R(x, y))

)
ψ1(P) makes predicate-variable P a linear order:

ψ1(P) , ∀x P(x, x) ∧ reflexivity

∀x∀y∀z
(
P(x, y) ∧ P(y, z) → P(x, z)

)
∧ transitivity

∀x∀y
(
P(x, y) ∧ P(y, x) → x .

= y
)
∧ anti-symmetry

∀x∀y
(
P(x, y) ∨ P(y, x)

)
totality

ψ2(P, x, y) is a WFF with free predicate-variable P of arity 2 and first-order
variables x and y, which makes y the successor of x in the linear order P:

ψ2(P, x, y) , ¬(x .
= y)∧P(x, y)∧∀z

(
P(x, z)∧P(z, y) → (x .

= z∨ y .
= z)

)

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 22 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I “A Hamiltonian path is a path that visits every node exactly once”

ϕ , ∃P
(

“P is a linear order” ∧ ∀x∀y (“y = x + 1” → R(x, y))
)

ϕ , ∃P
(
ψ1(P) ∧ ∀x∀y (ψ2(P, x, y) → R(x, y))

)
ψ1(P) makes predicate-variable P a linear order:

ψ1(P) , ∀x P(x, x) ∧ reflexivity

∀x∀y∀z
(
P(x, y) ∧ P(y, z) → P(x, z)

)
∧ transitivity

∀x∀y
(
P(x, y) ∧ P(y, x) → x .

= y
)
∧ anti-symmetry

∀x∀y
(
P(x, y) ∨ P(y, x)

)
totality

ψ2(P, x, y) is a WFF with free predicate-variable P of arity 2 and first-order
variables x and y, which makes y the successor of x in the linear order P:

ψ2(P, x, y) , ¬(x .
= y)∧P(x, y)∧∀z

(
P(x, z)∧P(z, y) → (x .

= z∨ y .
= z)

)
Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 23 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I 2-colorability:
represent color 1 by unary predicate P, and color 2 by ¬P

ϕ , ∃P∀x∀y
(
¬(x .

= y) ∧ R(x, y)→ (P(x)↔ ¬P(y))
)

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 24 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I 2-colorability:
represent color 1 by unary predicate P, and color 2 by ¬P

ϕ , ∃P∀x∀y
(
¬(x .

= y) ∧ R(x, y)→ (P(x)↔ ¬P(y))
)

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 25 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I 3-colorability:
represent 3 colors by unary predicate variables A1, A2, and A3

I ψ1 says “each node has exactly one color”:

ψ1(A1,A2,A3) , ∀x
((

A1(x) ∧ ¬A2(x) ∧ ¬A3(x)
)
∨(

¬A1(x) ∧ A2(x) ∧ ¬A3(x)
)
∨(

¬A1(x) ∧ ¬A2(x) ∧ A3(x)
))

I ψ2 says “no two points with the same color are connected”:

ψ2(A1,A2,A3) , ∀x∀y
((

A1(x) ∧ A1(y)→ ¬R(x, y)
)
∧(

A2(x) ∧ A2(y)→ ¬R(x, y)
)
∧(

A3(x) ∧ A3(y)→ ¬R(x, y)
))

I ϕ , ∃A1∃A2∃A3 (ψ1 ∧ ψ2)

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 26 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I 3-colorability:
represent 3 colors by unary predicate variables A1, A2, and A3

I ψ1 says “each node has exactly one color”:

ψ1(A1,A2,A3) , ∀x
((

A1(x) ∧ ¬A2(x) ∧ ¬A3(x)
)
∨(

¬A1(x) ∧ A2(x) ∧ ¬A3(x)
)
∨(

¬A1(x) ∧ ¬A2(x) ∧ A3(x)
))

I ψ2 says “no two points with the same color are connected”:

ψ2(A1,A2,A3) , ∀x∀y
((

A1(x) ∧ A1(y)→ ¬R(x, y)
)
∧(

A2(x) ∧ A2(y)→ ¬R(x, y)
)
∧(

A3(x) ∧ A3(y)→ ¬R(x, y)
))

I ϕ , ∃A1∃A2∃A3 (ψ1 ∧ ψ2)

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 27 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I 3-colorability:
represent 3 colors by unary predicate variables A1, A2, and A3

I ψ1 says “each node has exactly one color”:

ψ1(A1,A2,A3) , ∀x
((

A1(x) ∧ ¬A2(x) ∧ ¬A3(x)
)
∨(

¬A1(x) ∧ A2(x) ∧ ¬A3(x)
)
∨(

¬A1(x) ∧ ¬A2(x) ∧ A3(x)
))

I ψ2 says “no two points with the same color are connected”:

ψ2(A1,A2,A3) , ∀x∀y
((

A1(x) ∧ A1(y)→ ¬R(x, y)
)
∧(

A2(x) ∧ A2(y)→ ¬R(x, y)
)
∧(

A3(x) ∧ A3(y)→ ¬R(x, y)
))

I ϕ , ∃A1∃A2∃A3 (ψ1 ∧ ψ2)

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 28 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I 3-colorability:
represent 3 colors by unary predicate variables A1, A2, and A3

I ψ1 says “each node has exactly one color”:

ψ1(A1,A2,A3) , ∀x
((

A1(x) ∧ ¬A2(x) ∧ ¬A3(x)
)
∨(

¬A1(x) ∧ A2(x) ∧ ¬A3(x)
)
∨(

¬A1(x) ∧ ¬A2(x) ∧ A3(x)
))

I ψ2 says “no two points with the same color are connected”:

ψ2(A1,A2,A3) , ∀x∀y
((

A1(x) ∧ A1(y)→ ¬R(x, y)
)
∧(

A2(x) ∧ A2(y)→ ¬R(x, y)
)
∧(

A3(x) ∧ A3(y)→ ¬R(x, y)
))

I ϕ , ∃A1∃A2∃A3 (ψ1 ∧ ψ2)

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 29 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I unconnectedness

I ψ1 says “the set A is non-empty and its complement is nonempty”

ψ1(A) , ∃x∃y
(

A(x) ∧ ¬A(y)
)

I ψ2 says “there is no edge between A and its complement”

ψ2(A) , ∀x∀y
((

A(x) ∧ ¬A(y)
)
→
(
¬R(x, y) ∧ ¬R(y, x)

))
I ϕ , ∃A (ψ1 ∧ ψ2)

is true iff graph is not connected

I ϕ′ , ¬ϕ , ∀A (¬ψ1 ∨ ¬ψ2) , ∀A (ψ1 → ¬ψ2)
is true iff graph is connected

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 30 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I unconnectedness
I ψ1 says “the set A is non-empty and its complement is nonempty”

ψ1(A) , ∃x∃y
(

A(x) ∧ ¬A(y)
)

I ψ2 says “there is no edge between A and its complement”

ψ2(A) , ∀x∀y
((

A(x) ∧ ¬A(y)
)
→
(
¬R(x, y) ∧ ¬R(y, x)

))
I ϕ , ∃A (ψ1 ∧ ψ2)

is true iff graph is not connected

I ϕ′ , ¬ϕ , ∀A (¬ψ1 ∨ ¬ψ2) , ∀A (ψ1 → ¬ψ2)
is true iff graph is connected

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 31 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I unconnectedness
I ψ1 says “the set A is non-empty and its complement is nonempty”

ψ1(A) , ∃x∃y
(

A(x) ∧ ¬A(y)
)

I ψ2 says “there is no edge between A and its complement”

ψ2(A) , ∀x∀y
((

A(x) ∧ ¬A(y)
)
→
(
¬R(x, y) ∧ ¬R(y, x)

))

I ϕ , ∃A (ψ1 ∧ ψ2)
is true iff graph is not connected

I ϕ′ , ¬ϕ , ∀A (¬ψ1 ∨ ¬ψ2) , ∀A (ψ1 → ¬ψ2)
is true iff graph is connected

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 32 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I unconnectedness
I ψ1 says “the set A is non-empty and its complement is nonempty”

ψ1(A) , ∃x∃y
(

A(x) ∧ ¬A(y)
)

I ψ2 says “there is no edge between A and its complement”

ψ2(A) , ∀x∀y
((

A(x) ∧ ¬A(y)
)
→
(
¬R(x, y) ∧ ¬R(y, x)

))
I ϕ , ∃A (ψ1 ∧ ψ2)

is true iff graph is not connected

I ϕ′ , ¬ϕ , ∀A (¬ψ1 ∨ ¬ψ2) , ∀A (ψ1 → ¬ψ2)
is true iff graph is connected

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 33 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I unconnectedness
I ψ1 says “the set A is non-empty and its complement is nonempty”

ψ1(A) , ∃x∃y
(

A(x) ∧ ¬A(y)
)

I ψ2 says “there is no edge between A and its complement”

ψ2(A) , ∀x∀y
((

A(x) ∧ ¬A(y)
)
→
(
¬R(x, y) ∧ ¬R(y, x)

))
I ϕ , ∃A (ψ1 ∧ ψ2)

is true iff graph is not connected

I ϕ′ , ¬ϕ , ∀A (¬ψ1 ∨ ¬ψ2) , ∀A (ψ1 → ¬ψ2)
is true iff graph is connected

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 34 of 38

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I reachability

Example 2.27 in [LCS. page 140].

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 35 of 38

connections with descriptive complexity theory

I Starting point:

Syntactic classification of second-order WFF’s in prenex normal form ,
over a given signature Σ, according to:

1. interleaving of universal and existential quantifiers in the prenex, and
2. arities of predicate and function symbols in Σ.

I Example:
The WFF ϕ in each on slide 23, slide 25, slide 29, and slide 33, is an
existential second-order WFF .

I Example:
The ϕ in each of slide 25, slide 29, and slide 33, but not on slide 23, is a
monadic second-order WFF , because the second-order variables in ϕ

are restricted to be unary-predicate (i.e., set) variables.

I Example:
Monadic second-order logic has been extensively studied in relation to
graph properties and their complexities. (Search the WWW with the
keyword “monadic second-order logic.”)

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 36 of 38

connections with descriptive complexity theory

I Prototypical result of descriptive complexity theory:

Fagin’s theorem: Let C be the class of all finite undirected graphs (closed
under isomorphism). The following are equivalent statements:

1. C is in NP.
2. C is definable by an existential second-order sentence.

In fact, every class of objects in NP has an existential second-order
characterization with binary predicates and a universal first-order part.

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 37 of 38

(THIS PAGE INTENTIONALLY LEFT BLANK)

Assaf Kfoury, CS 511, Fall 2018, Handout 36 page 38 of 38

