CS511 - Fall 2018

Notes from 9/20 lecture
Instructor: Assaf Kfoury, Scriber: Konstantinos Sotiropoulos

Note: These notes contain mostly material discussed in class, but not presented in the handouts

Propositional Logic

There are several approaches to reason about a WFF in PL.

- Semantic approach using a Truth Table
- Formal deduction approach, which inludes several ways as:
- Natural deduction

Handout also includes approaches like: Hilbert-style formal proof system, or Gontzen-style formall proof system

- Analytic tableaux which was discussed during the previous lecture
- Resolution which is the content of today's lecture

Resolution in PL

Note that the book only presents natural deductions and extends it only to $1^{\text {st }}$ order logic.
Resolution is refutation-based \& refutation complete.
It can also be used to decide any semantic entailment $\Gamma \models \phi$, and can also be used to decide satisfiability.

A short note about Intutionistic PL: LEM, equivalently $\neg \neg e$ and PBC are all forbidden in Intutionistic propositional logic.
Every proof in I.P.L. is a proof in classical P.L., but not the other way.
In resolution we assume that WFF is in CNF, like:

$$
\phi=(p \vee \neg q \vee \neg r) \wedge(\neg p \vee q \vee \neg r) \wedge(r \vee s)
$$

We exploit the associativity of \wedge and \vee operators, there is no need to make a tree binary associative.
ϕ : is a formula that does modelling of a system or application $\phi \sim \psi \psi, \phi$ are equisatisfiable, but not equivalent. ϕ is not in CNF in general, but ψ has to be. (see more through links in the handout)
So, previous formula can be written as:
$\phi \sim\left\{C_{1}, C_{2}, C_{3}\right\}$, where: $C_{1}=p \vee \neg q \vee \neg r C_{2}=\neg p \vee q \vee \neg r C_{3}=r \vee s$
From page 4 in handout:
In step 1 we have $2 n$ variables, or $4 n-1$ symbols and $2 n$ parenthesis.
Variables represent natural instances, but new variables z_{i} do not.
From function in page 5:
$C N F(\phi, \Delta)$,
where $p h i$ is a single WFF of PL and Δ is a set of WFFs (actually a set of clauses that correspond to CNF). It is defined recursively:
$B N F: \phi:=\chi|\neg \phi| \phi \wedge \psi|\phi \vee \psi|$, we can add $\rightarrow, \leftrightarrow$, but we do not need them. χ stands for a propositional atom.
As the function is defined recursively we have to consider all cases in BNF definition.
Initial call $C N F(\phi,\{ \})$ Equisatisfiability: First WFF is satisfiable, iff second is. As already mentioned, there is no need to handle \wedge, \vee as binary, but because of associativity we can process them in multi-arity.

Remark: Analytic tableaux requires less creativity than natural deduction (not many guesses and there are more heuristics to apply).
In resolution there us only 1 rulem, totally deterministic (we only choose two clauses). Even less guesswork than analytic.
No method of course is perfect for everything.
Clauses have to satisfy resolution condition, one clause should have a literal, the other its negation.
What we do? We take all literals except the cases that satisfy the condition.

Example

$(x \vee \neg p \vee r)$ and $(\neg y \vee p \vee s \vee r)$.
We scan from left to right, $(\neg p, p)$ appears. So i can apply resolution and I can create a new clause ($x \vee r \vee s \vee r$).
A heuristic for improvement is when a literal is repeated, remove the duplication.

Question: Can I extract from resolution process an assignment, if a formula is satisfiable? Answer is yes. Not as simple as in tableaux method.

