CS 511 Formal Methods, Fall 2018	Instructor: Assaf Kfoury	
October $4^{\text {th }}, 2018$	Lecture 10	

(These lecture notes are not proofread and proof-checked by the instructor.)

Previously :

- Syntax
- Formal Proofs

Today :

- Semantics

1 Predicate Logic : Semantics (Handout 17)

1.1 Definition

Let \mathcal{F} be a set of function symbols and \mathcal{P} a set of predicate symbols. A structure \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ consists of :

- a non-empty set A, i.e. the domain
- for every 0 -ary $c \in \mathcal{F}$, a concrete element $c^{\mathcal{M}}$
- for every n-ary $f \in \mathcal{F}$, a concrete function $f^{\mathcal{M}}: A^{n} \rightarrow A$
- for every n-ary $P \in \mathcal{P}$, a concrete predicate $P^{\mathcal{M}} \subseteq A^{n}$

1.2 Examples

Consider the following models.

- s : unary function symbol for "successor", $\mathcal{M}=\left(\mathbb{N},=, s^{\mathbb{N}}, 0^{\mathbb{N}}, 1^{\mathbb{N}}\right)$
- binary function symbol, $\mathcal{M}=\left(\mathbb{N},=, s^{\mathbb{N}}, 0^{\mathbb{N}}, 1^{\mathbb{N}},+{ }^{\mathbb{N}}\right)$

Suppose we have the previous model and the closed formula $(\forall x \exists y \cdot s(y) \doteq x)$. Take $x=0$, is there a y such that $s(y)=x$? No.

1.3 Semantic entailment, semantic validity and atisfiability

1. WFF φ is satisfiable iif there is some \mathcal{M} and some ℓ such that $\mathcal{M}, \ell \vDash \varphi$ \rightarrow Let $\varphi \triangleq(\exists y \cdot s(x) \doteq y)$. Consider $\ell(x)=3$. We have $\mathcal{M}, \ell \vDash \varphi$ therefore ϕ satisfiable.
2. WFF φ is semantically valid iif for every \mathcal{M} and every ℓ, we have $\mathcal{M}, \ell \vDash \varphi$ \rightarrow Is φ defined previously valid? No. Counter examples in next lecture.

2 Examples of First-Order Theories (Handout 18)

2.1 Equality vs. Equivalence

1. $\forall x, y$, if x is the same element as y, then $s(x) \doteq s(y)$ i.e. $x \doteq y \rightarrow s(x) \doteq s(y)$
2. $\forall x_{1}, x_{2}, y_{1}, y_{2}$, if $x_{1} \doteq y_{1} \wedge x_{2} \doteq y_{2} \rightarrow f\left(x_{1}, x_{2}\right) \doteq f\left(y_{1}, y_{2}\right)$

2.2 Orders

- Partial Ordering : Let A be the set $A=\{a, b, c\}$.

$" \leq ": \subseteq$ is an example of a partial order that is not total ($\{a\}$ not related to $\{b, c\})$.
- Dense Ordering : You can always choose two elements and one in between.
- Well Ordering : Every non-empty subset has a smallest element.

