CS 511 : Lecture Notes

Andy Huynh

October 18, 2018

Today's lecture : Examples for first order definability of relations and functions
Preface: Always remember to note the distinction between a symbol's colliqually meaning, and it's model interpretation (e.g. given a model $\mathcal{M},+^{\mathcal{M}}$ can be different than +)

Example 1:

Suppose the model we're looking at is on the natural numbers with 1 binary predicate $(\mathbb{N} ;<)$
Assume that \doteq is always available and interpreted as equality.
Is zero is first order definable in $(\mathbb{N} ;<)$? Yes

$$
\varphi_{\{0\}}(x) \triangleq \forall y(x \doteq y \vee x<y)
$$

Take a look at this statement intuitively, for every element in \mathbb{N}, either x is that element, or x is less than. In this case 0 is the only elment that will fit this definition. Let's ask ourselves, can we simplify this? (Yes, if we just had $\varphi_{\{0\}}(x) \triangleq \forall y(x<y), 0$ would be the only item to satisfy this statement in this model). Let's check if this formula is correct

$$
\begin{aligned}
R & =\left\{a \in \mathbb{N} \mid(\mathbb{N} ;<; a) \models \varphi_{\{0\}}\right\} \\
& =\left\{a \in \mathbb{N} \mid(\mathbb{N} ;<) \models \varphi_{\{0\}}[a]\right\} \\
& =\{0\} \checkmark
\end{aligned}
$$

More definitions:

$$
\begin{aligned}
& \varphi_{\{1\}}(x) \triangleq \neg \varphi_{\{0\}}(x) \wedge \forall y\left(\neg \varphi_{\{0\}}(y) \rightarrow(x \doteq y \vee x<y)\right) \\
& \varphi_{\{2\}}(x) \triangleq \neg \varphi_{\{0\}}(x) \wedge \neg \varphi_{\{1\}}(x) \wedge \forall y\left(\left(\neg \varphi_{\{0\}}(y) \vee \neg \varphi_{\{1\}}(y)\right) \rightarrow(x \doteq y \vee x<y)\right)
\end{aligned}
$$

We can easily simplfy some of these formulas, for example in $\varphi_{\{2\}}(x)$ we can remove the $\varphi_{\{0\}}(x)$ in the implication due to the fact that $\varphi_{\{1\}}(x)$ already captures $\varphi_{\{0\}}(x)$ in it's own formula

$$
\varphi_{\{2\}}(x) \triangleq \neg \varphi_{\{0\}}(x) \wedge \neg \varphi_{\{1\}(x)} \wedge \forall y\left(\neg \varphi_{\{1\}}(y) \rightarrow(x \doteq y \vee x<y)\right)
$$

If we wanted to keep going for higher numbers, $\varphi_{\{n\}}(x)$ becomes annoyingly long. To make things easier let's do the following

We want to define a $\Psi_{\left\{n_{1}, \ldots, n_{k}\right\}}(x) \triangleq \neg \varphi_{\left\{n_{1}\right\}}(x) \wedge \neg \varphi_{\left\{n_{2}\right\}} \wedge \ldots \wedge \neg \varphi_{\left\{n_{k}\right\}}$. Can we do this?
CLAIM: There is a first-order $\operatorname{WFF} \varphi_{\{n\}}(x)$ s.t $R \triangleq\left\{a \in \mathbb{N}|(\mathbb{N} ;<)|=\varphi_{\{n\}}[a]\right\}=\{n\}$
For every finite $X \subseteq \mathbb{N}$, there is a first-order wff $\varphi_{X}(x)$ which uniquely defines X. Suppose that $X=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\} \quad k \geq 1$. Then

$$
\varphi_{X}(x) \triangleq \varphi_{\left\{n_{1}\right\}}(x) \vee \varphi_{\left\{n_{2}\right\}}(x) \vee \ldots \varphi_{\left\{n_{k}\right\}}(x)
$$

So yeah, we're good, let $\Psi_{X}(x) \triangleq \neg \varphi_{X}(x)$
What about if X was infinite? Impossible to make a first-order WFF, however, if X is cofinite we can define a first-order WFF

$$
\Psi_{X}(x) \triangleq \neg \varphi_{\left\{n_{1}\right\}}(x) \wedge \ldots \wedge \neg \varphi_{\left\{n_{k}\right\}}(x)
$$

Where $X=\mathbb{N} \backslash\left\{n_{1}, \ldots, n_{k}\right\}$

Example 2:

Let \mathcal{M} be a model where we define $(\mathbb{N} ;+; 0)$
Then we can define a our normal intutition of $<$ as such

$$
\varphi_{<}(x, y) \triangleq \exists z(\neg(z \doteq 0) \wedge(x+z \doteq y))
$$

Example 3:

Define monus - such that

$$
m \dot{-}= \begin{cases}0 & m<n \\ m-n & m \geq n\end{cases}
$$

Can we use the same model in example 2 to define monus? (Spoilers, yes)

$$
\varphi \doteq(x, y, z) \triangleq\left(\varphi_{<}(x, y) \rightarrow(z \doteq 0)\right) \wedge\left(\neg \varphi_{<}(x, y) \rightarrow x \doteq y+z\right)
$$

Example 4:

Let \mathcal{M} be a model where we define $(\mathbb{N} ; \mid ;+; 0)$
Where

$$
m \left\lvert\, n= \begin{cases}\text { True } & m \text { is a divisor of } \mathrm{n} \\ \text { False } & \text { o.w }\end{cases}\right.
$$

Can we define the least common multiple function? $(\operatorname{lcm}(m, n)=p)$

$$
\varphi_{l c m}(x, y, v) \triangleq(x \mid v) \wedge(y \mid v) \wedge \forall w\left((x \mid w) \wedge(y \mid w) \rightarrow\left(v w \vee \varphi_{<}(v, w)\right)\right)
$$

Questions to answer: Can we simplfy this? Yes. Can we define $l c m$ without using the less than formula we defined earlier? Yes.

More examples of definiability can be found in the slides.

Slide Example:

Say we have $(\mathbb{N} ; 0 ; S)$ where S is the successor function. Can we define addition?
What's wrong with this? (Exercise is left up to the reader)

$$
\forall x \forall y \forall z(\underbrace{S \ldots S}_{y} x \doteq z)
$$

Fact: addition is NOT first order definable from " 0 " and " S ". More facts in the handout page 14.

