Problem 1. **Software Modeling, Regular Expressions, LTL Model Checking.** Consider a fragment of a concurrent program with two threads, P and Q, which share the variable n:

<table>
<thead>
<tr>
<th>thread P</th>
<th>thread Q</th>
</tr>
</thead>
</table>
| 1 repeat
2 begin print a ;
3 $n := n + 1$;
4 if $n = 2$
5 begin print reset ;
6 $n := 0$
7 end | 1 repeat
2 begin print b ;
3 $n := n - 1$;
4 if $n = -2$
5 begin print target ;
6 $n := 0$; stop thread Q
7 end |

We take a begin-end block in each thread above as a “critical section” which is entirely executed without any interference from the other thread. This means that, once lines 2-8 in thread P starts executing, there is no interleaving with any of lines 2-8 in thread Q, and vice-versa. Interleaving only occurs between full begin-end blocks, and not between portions of them.

(1) Define a transition system M modeling the behavior of the two threads P and Q by drawing its diagram. In this part (1), ignore the printouts \{a, b, reset, target\}.

Hint for (1): Draw the diagram of M as a transition system with 8 states:

- 5 states when both P and Q are running and variable n stores an integer $i \in \{0, 1, 2, -1, -2\}$. Denote by $s[P,Q,i]$ the state of M when P and Q are running and n stores i.
- 3 states when only P is running and variable n stores an integer $i \in \{0, 1, 2\}$. Denote by $s[P,i]$ the state of M when only P is running and n stores i.

Take $s[P,Q,0]$ as the start state of M.

Answer:

![Diagram of transition system M]
We can incorporate the printouts \{a, b, \text{reset, target}\} as labels in the model \(M\) in two different ways, in parts (2) and (3) first, and then in parts (4) and (5).

(2) Consider the case when \{a, b, \text{reset, target}\} are labels for the transitions.\footnote{Use \{a, b, r, t\} instead of \{a, b, \text{reset, target}\} for simplicity.} For example, we can use label \(a\) to identify the transition from state \(s[P, Q, 0]\) to state \(s[P, Q, 1]\) by writing \(s[P, Q, 0] \xrightarrow{a} s[P, Q, 1]\), and we can use label \(b\) to identify the transition from state \(s[P, Q, 0]\) to state \(s[P, Q, -1]\) by writing \(s[P, Q, 0] \xrightarrow{b} s[P, Q, -1]\), etc.

Your task is to write a regular expression \(E\) over the alphabet \{a, b, r, t\} that denotes all finite sequences of transitions from \(s[P, Q, 0]\) back to \(s[P, Q, 0]\).

\textbf{Hint for (2)}: For every \(i \in \{1, 2, -1\}\), define a regular expression \(E[P, Q, i]\) where \(i \neq 0\) which denotes the sequences of transitions from \(s[P, Q, 0]\) to \(s[P, Q, i]\) without visiting these two states more than once each, followed by the sequences of transitions from \(s[P, Q, i]\) back to \(s[P, Q, 0]\) without visiting these two states more than once each. Try to write the desired \(E\) by using the three regular expressions \(E[P, Q, 1]\), \(E[P, Q, 2]\), and \(E[P, Q, -1]\).

\textbf{Answer}: Following the hint,

\[E[P, Q, 1] = ab + aar, \quad E[P, Q, 2] = aar, \quad E[P, Q, -1] = ba, \]

\[E = (E[P, Q, 1] + E[P, Q, 2] + E[P, Q, -1])^* = (ab + aar + ba)^* \]

(3) Consider again the case when \{a, b, \text{reset, target}\} are labels for the transitions. Your task is to write an \(\omega\)-regular expression \(F\) over the alphabet \{a, b, r, t\} that denotes all infinite sequences of transitions that start at state \(s[P, Q, 0]\) and visit state \(s[P, 0]\) infinitely often.

\textbf{Hint for (3)}: Use regular expression \(E\) from part (2).

\textbf{Answer}: Following the hint,

\[F = Ebbt (aar)^\omega = (ab + aar + ba)^* bbt (aar)^\omega \]

(4) For this part, we view \{a, b, r, t\} as atomic propositions which are labels for the states (not the transitions) in \(M\). For example, if \(S\) is the set of states and \(L\) is the labelling function,

\[S = \{s[P, Q, 0], \ldots, s[P, 2]\} \quad \text{and} \quad L : S \rightarrow \{\text{propositional WFF’s over \{a, b, r, t\}}\}, \]

then we can write \(L(s[P, Q, 0]) = \{a \land b\}\) to mean that the propositional WFF \(a \land b\) is true at state \(s[P, Q, 0]\); and \(L(s[P, Q, 1]) = \{a\}\) to mean that the atom \(a\) is true at \(s[P, Q, 1]\); etc.

Your task is to complete the definition of the labelling function \(L\).

\textbf{Answer}: Following the hint,

\[L(s[P, Q, 0]) \triangleq \{a \lor b \lor r\} \quad L(s[P, Q, 1]) \triangleq \{a\} \quad L(s[P, Q, 2]) \triangleq \{a\} \quad L(s[P, Q, -1]) \triangleq \{b\} \]

\[L(s[P, Q, -2]) \triangleq \{b\} \quad L(s[P, 0]) \triangleq \{r \lor t\} \quad L(s[P, 1]) \triangleq \{a\} \quad L(s[P, 2]) \triangleq \{a\} \]

A more verbose labelling for \(s[P, Q, 0]\) is \(L(s[P, Q, 0]) \triangleq \{(a \land b) \lor a \lor b \lor r\}\), but this latter WFF is equivalent to \(\{a \lor b \lor r\}\).
This is a continuation of part (4). We are given the three LTL formulas:

\[\varphi_1 \triangleq GFr, \quad \varphi_2 \triangleq G((r \lor t) \rightarrow (Xa \land XXa)), \quad \varphi_3 \triangleq ((a \lor b \lor r) U t). \]

For each LTL formula \(\varphi_i \) above, with \(i \in \{1, 2, 3\} \), your task is twofold:

1. Find a path \(\pi_i \) in \(\mathcal{M} \) (whose first state is the start state \(s[P,Q,0] \)) such that \(\mathcal{M}, \pi_i \models \varphi_i \).
2. Decide whether \(\mathcal{M} \models \varphi_i \).

Answer: Consider each formula in turn:

- For \(\varphi_1 \), using the labelling chosen in part (4), there is no path such that \(\mathcal{M}, \pi_1 \models \varphi_1 \). Hence, a fortiori, \(\mathcal{M} \not\models \varphi_1 \).

 On the other hand, if you choose a labelling such that \(\mathcal{L}(s[P,Q,0]) = \{a \land b\} \), as suggested in the hint for (4), then there are paths \(\pi_1 \) such that \(\mathcal{M}, \pi_1 \models \varphi_1 \), e.g., let \(\pi_1 \triangleq (s[P,Q,0] s[P,Q,1] s[P,Q,2])^\omega \) and there many others. Nonetheless, it is still the case that \(\mathcal{M} \not\models \varphi_1 \).

- For \(\varphi_2 \), it is easy to see that every infinite path in \(\mathcal{M} \) will satisfy it. We can therefore let \(\pi_2 \) be any infinite path in \(\mathcal{M} \). Hence, also, \(\mathcal{M} \models \varphi_2 \).

- For \(\varphi_3 \), using the labelling chosen in part (4), there is no path such that \(\mathcal{M}, \pi_3 \models \varphi_3 \). Hence, a fortiori, \(\mathcal{M} \not\models \varphi_3 \).

 However, if you choose a labelling such that \(\mathcal{L}(s[P,0]) = \{t\} \), instead of \(\mathcal{L}(s[P,0]) = \{r \lor t\} \), then there is a path \(\pi_3 \) such that \(\mathcal{M}, \pi_3 \models \varphi_3 \), e.g., let \(\pi_3 \) be an infinite path that starts with \(s[P,Q,0] s[P,Q,-1] s[P,Q,-2] \cdots \). Nonetheless, it is still the case that \(\mathcal{M} \not\models \varphi_3 \) because not every infinite path that begins from the start state \(s[P,Q,0] \) satisfies \(\varphi_3 \).

Problem 2. CTL Model Checking. Consider the transition system \(\mathcal{A} \) in Figure 1, whose set of states is \(S \triangleq \{s_0, s_1, s_2, s_3, s_4\} \) and atomic propositions are \(\{a, b\} \). There are two parts in this problem, (6) and (7). For each CTL formula \(\psi_i \) below, with \(i \in \{1, 2\} \), your task is twofold:

1. Determine the satisfaction set \(\text{Sat}(\psi_i) \), i.e., the set of all the states \(s \in S \) such that \(\mathcal{A}, s \models \psi_i \).
2. Decide whether \(\mathcal{A} \models \psi_i \).

(6) CTL formula \(\psi_1 \triangleq \forall (a U b) \lor \exists X (\forall G b) \)
Answer: We can follow the inside-out construction of the satisfaction sets:

- \(\text{Sat}(b) = \{s_2, s_3, s_4\} \)
- \(\text{Sat}(\forall G b) = \{s_4\} \)
- \(\text{Sat}(\exists X (\forall G b)) = \{s_0, s_4\} \)
- \(\text{Sat}(a) = \{s_1, s_2\} \)
- \(\text{Sat}(\forall (a \mathcal{U} b)) = \{s_1, s_2, s_3, s_4\} \)
- \(\text{Sat}(\psi_1) = \{s_1, s_2, s_3, s_4\} \cup \{s_0, s_4\} = \{s_0, s_1, s_2, s_3, s_4\} \)

Since the start states, \(s_0 \) and \(s_3 \), are in \(\text{Sat}(\psi_1) \), we conclude that \(A \models \psi_1 \).

A more direct approach is to first observe that \(s \models A \) is one of the initial states of system \(A \), and then observe that \(A, s \models \forall (a \mathcal{U} b) \) because all paths from \(s_3 \) start with \(b \). With these two observations, we conclude \(A \models \psi_1 \).

(7) CTL formula \(\psi_2 \triangleq \forall G (\forall (a \mathcal{U} b)) \)

Answer: If \(\pi \triangleq t_0 t_1 t_2 \cdots \) is an infinite execution path, we denote the \(i \)-th state in \(\pi \) by writing \(\pi[i] \) for every \(i \geq 0 \). We start by noting a sequence of equivalences:

\[
A, s \models \psi_2 \iff \text{for every path } \pi \text{ from } s \text{ we have } A, \pi \models G (\forall (a \mathcal{U} b))
\]

\[
\iff \text{for every path } \pi \text{ from } s, \text{ for every } i \geq 0, \text{ we have } A, \pi[i] \models \forall (a \mathcal{U} b)
\]

\[
\iff \text{for every path } \pi \text{ from } s, \text{ for every } i \geq 0, \text{ for every path } \pi' \text{ from } \pi[i], \text{ we have } A, \pi' \models a \mathcal{U} b
\]

Consider the initial state \(s_0 \) and the path \(\pi \triangleq s_0 s_1^\omega \). By the equivalences above, \(A, s_0 \models \psi_2 \) will hold iff all the suffixes of \(\pi \) (including \(\pi \) itself) satisfy \((a \mathcal{U} b) \). By inspection of the transition system \(A \), it is clear that \(A, \pi \not\models a \mathcal{U} b \). Hence, \(A, s_0 \not\models \psi_2 \) and, hence also, \(s_0 \not\in \text{Sat}(\psi_2) \). Since \(s_0 \) is one of the initial states of \(A \), it follows that \(A \not\models \psi_2 \).

Hint for (6) and (7): Follow the inside-out construction of the satisfaction sets, going from smaller sub-formulas to larger sub-formulas (as in the example in Handout 23, pages 3-8).

Problem 3. LTL Definability.

(8) Write a LTL formula which enforces the following requirement in a transition system: *At every state \(s \), if \(p \) is true, then at every state \(s' \) reachable from \(s \) in one transition or more, if \(q \) is true, then \(r \) is false until \(t \) becomes true (for all continuations of the execution path starting at \(s' \)).*

Answer: Although the translation of informal requirements into formal specifications is generally fraught with ambiguities, in this case the informal requirement can be directly translated to:

\[
G \left(p \rightarrow X G (q \rightarrow \neg r \mathcal{U} t) \right)
\]

(9) Write a LTL formula which enforces the following requirement in a a transition system: *For every state \(s_i \) along an execution path \(s_1 s_2 s_3 \cdots \), unless \(s_i \) is the first state \(s_1 \), if \(p \) is true
in s_i, then p must be true in at least one of the two states just before s_i, i.e., in the states s_{i-1} and s_{i-2}.

Answer: The informal requirement in English can be directly translated to:

$$(Xp \rightarrow p) \land G (XXp \rightarrow p \lor Xp)$$

(10) Write a LTL formula which enforces the following requirement in a transition system: *In every odd state along an execution path $\pi = s_1s_2s_3\cdots$ the atom p is true, and in every even state of the same path π the atom p is false.*

Answer: The informal requirement in English can be directly translated to:

$$p \land G (p \leftrightarrow X\neg p)$$

Problem 4. CTL Definability.

(11) Write a CTL formula which enforces the following requirement in a transition system: *At every state s, if p is true, then at every state s' reachable from S in one transition or more, if q is true, then r is false until t becomes true (for all continuations of the execution path starting at s').*

Answer: In this case, it suffices to insert the appropriate quantifiers into LTL formula in (8):

$$\mathsf{AG} \left(p \rightarrow \mathsf{AXAG} (q \rightarrow \mathsf{A[\neg U t]}) \right)$$

(12) Write a CTL formula which enforces the following requirement in a transition system: *There exists a path π such that, for every state s on π, there exists a path π' starting at s, which eventually enters a state s' where p is true and which, immediately after s', enters another state s'' where $\neg p$ is true.*

Answer: The informal requirement in English can be directly translated to:

$$\mathsf{EF} \left(p \land \mathsf{EX} \neg p \right)$$

(13) Write a CTL formula which enforces the following requirement in a transition system: *There exists a state s where atom p is true and on all paths starting at s, atom r is true as long as atom q is not true.*

Answer: We can express that r is true as long as q is not true by the formula rWq, rather than by the formula rUq which is more restrictive than the stated requirement. To say that p is true and that all paths satisfy rWq, we write $p \land A (rWq)$. Because we need only one state in which this formula holds, we existentially range over all paths and require the formula to eventually hold in some state. We thus obtain:

$$\mathsf{EF} \left(p \land A (rWq) \right)$$
Write a CTL formula which enforces the following requirement in a transition system: For every path π and in every state s on π, atom p is true iff two conditions: (1) atom q is true and (2), in the state immediately preceding s, atom r is true.

Answer: Atom p cannot be true in the first state at which a path starts. We thus obtain:

$$\neg p \land AG \left((r \rightarrow AX(p \leftrightarrow q)) \land (\neg r \rightarrow AX\neg p) \right)$$