An algebraic structure \mathcal{A}, or just an algebra \mathcal{A}, is a set A, called the carrier set or underlying set of \mathcal{A}, with one or more operations on the carrier A. (Search the Web, here and here, for more details.)
Algebraic Structures: definitions and examples

- An algebraic structure \mathcal{A}, or just an algebra \mathcal{A}, is a set A, called the carrier set or underlying set of \mathcal{A}, with one or more operations on the carrier A. (Search the Web, here and here, for more details.)

- Examples of algebraic structures:
 - $(\mathbb{Z}, +, \cdot)$
 the set of integers with binary operations addition “$+$” and multiplication “\cdot”,
 - $(\mathbb{N}, \text{succ, pred, 0, 1})$
 the set of natural numbers with unary operations, “succ” and “pred”,
 and nullary operations, “0” and “1”,

Assaf Kfoury, CS 512, Spring 2015, Handout 06
An **algebraic structure** \mathcal{A}, or just an **algebra** \mathcal{A}, is a set A, called the **carrier set** or **underlying set** of \mathcal{A}, with one or more operations on the carrier A. (Search the Web, here and here, for more details.)

Examples of **algebraic structures**:

- $(\mathbb{Z}, +, \cdot)$
 the set of integers with **binary** operations addition “$+$” and multiplication “\cdot”,

- $(\mathbb{N}, \text{succ}, \text{pred}, 0, 1)$
 the set of natural numbers with **unary** operations, “succ” and “pred”, and **nullary** operations, “0” and “1”,

- $(T, \text{node}, \text{Lt}, \text{Rt})$ where T is the least set such that:

$$T \supseteq \{a, b, c\} \cup \{\langle t_1, t_2 \rangle \mid t_1, t_2 \in T\}$$

with one **binary** operation “node” and two **unary** operations “Lt” and “Rt”, defined by:
Algebraic Structures: definitions and examples

\begin{align*}
\text{node} : & \ T \times T \to T \quad \text{such that} \quad \text{node}(t_1, t_2) = \langle t_1, t_2 \rangle \\
\text{Lt} : & \ T \to T \quad \text{such that} \quad \text{Lt}(t) = \begin{cases}
 t_1 & \text{if } t = \langle t_1, t_2 \rangle, \\
 \text{undefined} & \text{otherwise.}
\end{cases} \\
\text{Rt} : & \ T \to T \quad \text{such that} \quad \text{Rt}(t) = \begin{cases}
 t_2 & \text{if } t = \langle t_1, t_2 \rangle, \\
 \text{undefined} & \text{otherwise.}
\end{cases}
\end{align*}
node : \(T \times T \rightarrow T \) such that \(\text{node}(t_1, t_2) = \langle t_1, t_2 \rangle \)

\(\text{Lt} : T \rightarrow T \) such that \(\text{Lt}(t) = \begin{cases} t_1 & \text{if } t = \langle t_1, t_2 \rangle, \\ \text{undefined} & \text{otherwise}. \end{cases} \)

\(\text{Rt} : T \rightarrow T \) such that \(\text{Rt}(t) = \begin{cases} t_2 & \text{if } t = \langle t_1, t_2 \rangle, \\ \text{undefined} & \text{otherwise}. \end{cases} \)

- Sometimes an **algebraic structure** includes two (or more) carriers, together with operations between them, in which case we say the algebraic structure is **two-sorted** (or **multi-sorted**).
node : \(T \times T \rightarrow T\) such that node\((t_1, t_2) = \langle t_1, t_2 \rangle\)

\(Lt : T \rightarrow T\) such that \(Lt(t) = \begin{cases} t_1 & \text{if } t = \langle t_1, t_2 \rangle, \\ \text{undefined} & \text{otherwise}. \end{cases}\)

\(Rt : T \rightarrow T\) such that \(Rt(t) = \begin{cases} t_2 & \text{if } t = \langle t_1, t_2 \rangle, \\ \text{undefined} & \text{otherwise}. \end{cases}\)

> Sometimes an algebraic structure includes two (or more) carriers, together with operations between them, in which case we say the algebraic structure is two-sorted (or multi-sorted).

> Examples of two-sorted algebraic structures:

> \((\mathbb{Z}, \mathbb{B}, \leq, +, \cdot)\) where \(\mathbb{B} = \{F, T\}\) and \(\leq : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{B}\).
Algebraic Structures: definitions and examples

\[
\text{node} : T \times T \to T \quad \text{such that} \quad \text{node}(t_1, t_2) = \langle t_1, t_2 \rangle
\]

\[
\text{Lt} : T \to T \quad \text{such that} \quad \text{Lt}(t) = \begin{cases} t_1 & \text{if } t = \langle t_1, t_2 \rangle, \\ \text{undefined} & \text{otherwise}. \end{cases}
\]

\[
\text{Rt} : T \to T \quad \text{such that} \quad \text{Rt}(t) = \begin{cases} t_2 & \text{if } t = \langle t_1, t_2 \rangle, \\ \text{undefined} & \text{otherwise}. \end{cases}
\]

- Sometimes an \textit{algebraic structure} includes two (or more) carriers, together with operations between them, in which case we say the algebraic structure is \textit{two-sorted} (or \textit{multi-sorted}).

- Examples of \textit{two-sorted algebraic structures}:
 - \((\mathbb{Z}, \mathbb{B}, \leq, +, \cdot)\) where \(\mathbb{B} = \{F, T\}\) and \(\leq : \mathbb{Z} \times \mathbb{Z} \to \mathbb{B}\).
 - \((T, \mathbb{N}, \text{node}, \text{Lt}, \text{Rt}, | |, \text{height})\) where \(T\) is defined on the previous slide, with \(| | : T \to \mathbb{N}\) and \(\text{height} : T \to \mathbb{N}\).
Sometimes in a **multi-sorted algebraic structure**, such as $(\mathbb{Z}, \mathbb{B}, \leq, +, \cdot)$, we omit the Boolean carrier \mathbb{B} for brevity and simply write $(\mathbb{Z}, \leq, +, \cdot)$.
Sometimes in a **multi-sorted algebraic structure**, such as $(\mathbb{Z}, \mathbb{B}, \leq, +, \cdot)$, we omit the Boolean carrier \mathbb{B} for brevity and simply write $(\mathbb{Z}, \leq, +, \cdot)$.

This assumes that it is clear to the reader that “\leq” is a function from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{B}, *i.e.*, “\leq” is a binary **relation** (rather than a binary **function** or **operation**). As a binary relation, we can write: $\leq \subseteq \mathbb{Z} \times \mathbb{Z}$.
Sometimes in a multi-sorted algebraic structure, such as $(\mathbb{Z}, \mathbb{B}, \leq, +, \cdot)$, we omit the Boolean carrier \mathbb{B} for brevity and simply write $(\mathbb{Z}, \leq, +, \cdot)$.

This assumes that it is clear to the reader that “\leq” is a function from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{B}, i.e., “\leq” is a binary relation (rather than a binary function or operation). As a binary relation, we can write: $\leq \subseteq \mathbb{Z} \times \mathbb{Z}$.

Strictly speaking, a structure such as $(\mathbb{Z}, \leq, +, \cdot)$, which now includes operations as well as relations, is called a relational structure rather than just an algebraic structure.
Sometimes in a multi-sorted algebraic structure, such as \((\mathbb{Z}, \mathbb{B}, \leq, +, \cdot)\), we omit the Boolean carrier \(\mathbb{B}\) for brevity and simply write \((\mathbb{Z}, \leq, +, \cdot)\).

This assumes that it is clear to the reader that “\(\leq\)” is a function from \(\mathbb{Z} \times \mathbb{Z}\) to \(\mathbb{B}\), i.e., “\(\leq\)” is a binary relation (rather than a binary function or operation). As a binary relation, we can write:
\[\leq \subseteq \mathbb{Z} \times \mathbb{Z}.\]

Strictly speaking, a structure such as \((\mathbb{Z}, \leq, +, \cdot)\), which now includes operations as well as relations, is called a relational structure rather than just an algebraic structure.

But the transition from algebraic structures to more general relational structures is not demarcated sharply.

In particular, if a structure \(\mathcal{A}\) includes one or two relations with standard meanings (such as “\(\leq\)”), we can continue to call \(\mathcal{A}\) an algebraic structure.
A **partially ordered set**, or **poset** for short, is a set P with a **partial ordering** \leq on P, i.e., for all $a, b, c \in P$, the ordering \leq satisfies:

- $a \leq a$ “\leq is reflexive”
- $(a \leq b \text{ and } b \leq a)$ imply $a = b$ “\leq is anti-symmetric”
- $(a \leq b \text{ and } b \leq c)$ imply $a \leq c$ “\leq is transitive”

The ordering \leq is **total** if it also satisfies for all $a, b \in P$:

$(a \leq b) \text{ or } (b \leq a)$
A **partially ordered set**, or **poset** for short, is a set P with a **partial ordering** \trianglelefteq on P, i.e., for all $a, b, c \in P$, the ordering \trianglelefteq satisfies:

- $a \trianglelefteq a$ ("\trianglelefteq is reflexive")
- $(a \trianglelefteq b$ and $b \trianglelefteq a)$ imply $a = b$ ("\trianglelefteq is anti-symmetric")
- $(a \trianglelefteq b$ and $b \trianglelefteq c)$ imply $a \trianglelefteq c$ ("\trianglelefteq is transitive")

The ordering \trianglelefteq is **total** if it also satisfies for all $a, b \in P$:

$(a \trianglelefteq b)$ or $(b \trianglelefteq a)$

Examples of posets:

1. $(2^A, \trianglelefteq)$ where A is a non-empty set and \trianglelefteq is \subseteq,
2. $(\mathbb{N} - \{0\}, \trianglelefteq)$ where $m \trianglelefteq n$ iff “m divides n”,
3. $(\mathbb{N}, \trianglelefteq)$ where \trianglelefteq is the usual ordering \leq.

In (1) and (2), \trianglelefteq is **not total**; in (3), \trianglelefteq is **total**.
Lattices: definitions and examples

- An **lattice** \mathcal{L} is an algebraic structure $(L, \sqsubseteq, \lor, \land)$ where \lor and \land are **binary operations**, and \sqsubseteq is a **binary relation**, such that:
 - (L, \sqsubseteq) is a poset,
 - for all $a, b \in L$, the **least upper bound** of a and b in the ordering \sqsubseteq
 - exists,
 - is unique,
 - and is the result of the operation “$a \lor b$”,
 - for all $a, b \in L$, the **greatest lower bound** of a and b in \sqsubseteq
 - exists,
 - is unique,
 - and is the result of the operation “$a \land b$”.

- Examples of lattices:
 - $(2^A, \subseteq, \cup, \cap)$ where \subseteq is \subseteq, \lor is \cup, and \land is \cap
 - $(\mathbb{N} - \{0\}, \sqsubset, \lor, \land)$ where $m \sqsubset n$ iff “m divides n”, \lor is “lcm”, and \land is “gcd”.
Lattices: definitions and examples

▶ An **lattice** \(\mathcal{L} \) is an algebraic structure \((L, \sqsubseteq, \lor, \land)\) where \(\lor \) and \(\land \) are **binary operations**, and \(\sqsubseteq \) is a **binary relation**, such that:

▶ \((L, \sqsubseteq)\) is a poset,
▶ for all \(a, b \in L \), the **least upper bound** of \(a \) and \(b \) in the ordering \(\sqsubseteq \)
 ▶ exists,
 ▶ is unique,
 ▶ and is the result of the operation “\(a \lor b \)”,
▶ for all \(a, b \in L \), the **greatest lower bound** of \(a \) and \(b \) in \(\sqsubseteq \)
 ▶ exists,
 ▶ is unique,
 ▶ and is the result of the operation “\(a \land b \)”.

▶ **Examples of lattices:**

▶ \((2^A, \sqsubseteq, \lor, \land)\) where \(\sqsubseteq \) is \(\subseteq \), \(\lor \) is \(\cup \), \(\land \) is \(\cap \)
Lattices: definitions and examples

- An **lattice** \mathcal{L} is an algebraic structure $(L, \sqsubseteq, \lor, \land)$ where \lor and \land are **binary operations**, and \sqsubseteq is a **binary relation**, such that:
 - (L, \sqsubseteq) is a poset,
 - for all $a, b \in L$, the **least upper bound** of a and b in the ordering \sqsubseteq exists, is unique, and is the result of the operation “$a \lor b$”,
 - for all $a, b \in L$, the **greatest lower bound** of a and b in \sqsubseteq exists, is unique, and is the result of the operation “$a \land b$”.

- **Examples of lattices:**
 - $(2^A, \subseteq, \lor, \land)$ where \subseteq is \subseteq, \lor is \cup, \land is \cap
 - $(\mathbb{N} - \{0\}, \preceq, \lor, \land)$ where $m \preceq n$ iff “m divides n”, \lor is “lcm”, \land is “gcd”
A lattice \(L = (\mathcal{L}, \leq, \lor, \land) \) is a distributive lattice if for all \(a, b, c \in \mathcal{L} \), the following equations – also called axioms or equational axioms – are satisfied:

\[
\begin{align*}
 a \land (b \lor c) &= (a \land b) \lor (a \land c) & \text{“\land” distributes over “\lor”} \\
 a \lor (b \land c) &= (a \lor b) \land (a \lor c) & \text{“\lor” distributes over “\land”}
\end{align*}
\]
A lattice \(\mathcal{L} = (L, \sqsubseteq, \lor, \land) \) is a **distributive lattice** if for all \(a, b, c \in L \), the following equations – also called **axioms** or **equational axioms** – are satisfied:

\[
\begin{align*}
 a \land (b \lor c) &= (a \land b) \lor (a \land c) \quad \text{“}\land\text{” distributes over “}\lor\text{”} \\
 a \lor (b \land c) &= (a \lor b) \land (a \lor c) \quad \text{“}\lor\text{” distributes over “}\land\text{”}
\end{align*}
\]

Example of a distributive lattice:

\((2^A, \subseteq, \cup, \cap)\)
Distributive Lattices: definitions and examples

▶ A lattice $\mathcal{L} = (L, \leq, \lor, \land)$ is a **distributive lattice** if for all $a, b, c \in L$, the following **equations** – also called **axioms** or **equational axioms** – are satisfied:

$$a \land (b \lor c) = (a \land b) \lor (a \land c) \quad \text{“\land” distributes over “\lor”}$$

$$a \lor (b \land c) = (a \lor b) \land (a \lor c) \quad \text{“\lor” distributes over “\land”}$$

▶ Example of a **distributive lattice**:

$$(2^A, \subseteq, \cup, \cap)$$

▶ Is the following an example of a **distributive lattice**?

$$(\mathbb{N} - \{0\}, \ldots \text{ divides } \ldots, \text{lcm}, \text{gcd})$$

▶ For more details on **posets** and **lattices**, go to the Web: [here](#) (Hasse diagrams), [here](#) (distributive lattices), and [here](#).
A bounded lattice is an algebraic structure of the form
\[\mathcal{L} = (L, \preceq, \lor, \land, \bot, \top) \]
where \(\bot \) and \(\top \) are nullary (or 0-ary) operations on \(L \) (or, equivalently, elements in \(L \)) such that:

1. \(\mathcal{L} = (L, \preceq, \lor, \land) \) is a lattice,
2. \(\bot \preceq a \) or, equivalently, \(\bot \land a = \bot \) for every \(a \in L \),
3. \(a \preceq \top \) or, equivalently, \(a \lor \top = \top \) for every \(a \in L \).

The elements \(\bot \) and \(\top \) are uniquely defined. \(\bot \) is the minimum element, and \(\top \) is the maximum element, of the bounded lattice.
A **bounded lattice** is an algebraic structure of the form

\[\mathcal{L} = (L, \sqsubseteq, \lor, \land, \bot, \top) \]

where \(\bot \) and \(\top \) are **nullary** (or **0-ary**) **operations** on \(L \) (or, equivalently, **elements** in \(L \)) such that:

1. \(\mathcal{L} = (L, \sqsubseteq, \lor, \land) \) is a lattice,
2. \(\bot \sqsubseteq a \) or, equivalently, \(\bot \land a = \bot \) for every \(a \in L \),
3. \(a \sqsubseteq \top \) or, equivalently, \(a \lor \top = \top \) for every \(a \in L \).

The elements \(\bot \) and \(\top \) are uniquely defined. \(\bot \) is the **minimum** element, and \(\top \) is the **maximum** element, of the bounded lattice.

Example of a bounded lattice: \((2^A, \subseteq, \cup, \cap, \emptyset, A)\)
Bounded Lattices: definitions and examples

- A **bounded lattice** is an algebraic structure of the form

\[\mathcal{L} = (L, \sqsubseteq, \lor, \land, \bot, \top) \]

where \(\bot \) and \(\top \) are **nullary** (or **0-ary**) **operations** on \(L \) (or, equivalently, **elements** in \(L \)) such that:

1. \(\mathcal{L} = (L, \sqsubseteq, \lor, \land) \) is a lattice,
2. \(\bot \sqsubseteq a \) or, equivalently, \(\bot \land a = \bot \) for every \(a \in L \),
3. \(a \sqsubseteq \top \) or, equivalently, \(a \lor \top = \top \) for every \(a \in L \).

The elements \(\bot \) and \(\top \) are uniquely defined. \(\bot \) is the **minimum** element, and \(\top \) is the **maximum** element, of the bounded lattice.

- Example of a **bounded lattice**: \((2^A, \subseteq, \cup, \cap, \emptyset, A) \)

- Example a **lattice** with a minimum, but **no** maximum:

\[(\mathbb{N} - \{0\}, \text{"_ divides _"}, \text{lcm}, \text{gcd}, 1) \]
Let $\mathcal{L} = (L, \leq, \lor, \land, \bot, \top)$ be a bounded lattice. An element $a \in L$ has a complement $b \in L$ iff:

$$a \land b = \bot \quad \text{and} \quad a \lor b = \top$$

FACT: In a bounded distributive lattice, complements are uniquely defined, i.e., an element $a \in L$ cannot have more than one complement $b \in L$.

Proof: Exercise.
Complemented Lattices: definitions and examples

A complemented lattice is a bounded distributive lattice
\(\mathcal{L} = (L, \sqsubseteq, \lor, \land, \bot, \top) \) where every element has a complement.

Example of a complemented lattice: \((2^A, \subseteq, \cup, \cap, \emptyset, A)\)

Again, for more details various kinds of lattices, go to the Web: here (Hasse diagrams), here (distributive lattices), here (lattices).
Complemented Lattices: definitions and examples

- A **complemented lattice** is a **bounded distributive lattice** \(\mathcal{L} = (L, \sqsubseteq, \lor, \land, \bot, \top) \) where every element has a complement.

- Example of a **complemented lattice**: \((2^A, \subseteq, \cup, \cap, \emptyset, A)\)

- Again, for more details various kinds of **lattices**, go to the Web: [here](#) (Hasse diagrams), [here](#) (distributive lattices), [here](#) (lattices).
A complemented lattice $\mathcal{L} = (L, \preceq, \lor, \land, \bot, \top)$ is almost a Boolean algebra, but not quite!

What is missing is an additional operation on L to map an element $a \in L$ to its complement.
A complemented lattice $L = (L, \leq, \lor, \land, \bot, \top)$ is almost a Boolean algebra, but not quite!

What is missing is an additional operation on L to map an element $a \in L$ to its complement.

A first definition of a Boolean algebra:

$$L = (L, \leq, \lor, \land, \bot, \top, \neg)$$

where:
Boolean Algebras: definitions and examples

- A complemented lattice $\mathcal{L} = (L, \leq, \lor, \land, \bot, \top)$ is almost a Boolean algebra, but not quite!

 What is missing is an additional operation on L to map an element $a \in L$ to its complement.

- A first definition of a Boolean algebra:

 $\mathcal{L} = (L, \leq, \lor, \land, \bot, \top, \neg)$

 where:

 1. $\mathcal{L} = (L, \leq, \lor, \land, \bot, \top)$ is a complemented lattice,

 2. The new operation \neg is unary and maps every $a \in L$ to its complement, i.e.:

 $a \land (\neg a) = \bot$ and $a \lor (\neg a) = \top$
A second definition of a **Boolean algebra**
(easier to compare with Heyting algebras later):

\[\mathcal{L} = (L, \sqsubseteq, \lor, \land, \perp, \top, \rightarrow) \]

where:
A second definition of a **Boolean algebra**

(easier to compare with Heyting algebras later)

\[\mathcal{L} = (L, \sqsubseteq, \lor, \land, \bot, \top, \rightarrow) \]

where:

1. \(\mathcal{L} = (L, \sqsubseteq, \lor, \land, \bot, \top) \) is a **complemented lattice**,

2. The new operation “\(\rightarrow \)” is **binary** such that \((a \rightarrow \bot) \) is the complement of \(a \), for every every \(a \in L \).
Boolean Algebras: definitions and examples

- A second definition of a **Boolean algebra** (easier to compare with Heyting algebras later):

 \[\mathcal{L} = (L, \sqsubseteq, \lor, \land, \bot, \top, \rightarrow) \]

 where:
 1. \(\mathcal{L} = (L, \sqsubseteq, \lor, \land, \bot, \top) \) is a **complemented lattice**,
 2. The new operation \(\rightarrow \) is **binary** such that \((a \rightarrow \bot) \) is the complement of \(a \), for every \(a \in L \).

FACT: The two preceding definitions of **Boolean algebras** are equivalent because we can define \(\rightarrow \) in terms of \(\{\lor, \neg\} \):

\[a \rightarrow b := (\neg a) \lor b \]

as well as define \(\neg \) in terms of \(\{\rightarrow, \bot\} \):

\[\neg a := a \rightarrow \bot \]
Examples of **Boolean algebras**:

For an arbitrary non-empty set A:

$$(\mathcal{P}(A), \subseteq, \cup, \cap, \emptyset, A, \overline{})$$

where $\overline{X} = A - X$ for every $X \subseteq A$.

Assaf Kfoury, CS 512, Spring 2015, Handout 06
Examples of **Boolean algebras**:

- For an arbitrary non-empty set A:
 $$(2^A, \subseteq, \cup, \cap, \emptyset, A, \overline{\cdot})$$
 where $\overline{X} = A - X$ for every $X \subseteq A$.

- The standard 2-element Boolean algebra:
 $$(\{0, 1\}, \leq, \lor, \land, 0, 1, \neg)$$
 or $$(\{0, 1\}, \leq, \lor, \land, 0, 1, \rightarrow)$$
 where we write “0” for F and “1” for T.
Heyting Algebras: definitions and examples

- A **Heyting algebra** is an algebraic structure of the form

\[\mathcal{L} = (L, \leq, \vee, \wedge, \bot, \top, \rightarrow) \]

where:

- A Heyting algebra is an algebraic structure of the form

\[\mathcal{L} = (L, \leq, \vee, \wedge, \bot, \top, \rightarrow) \]

FACT: The preceding equations uniquely define the operation \(\rightarrow \).

Proof. Exercise.

FACT: Every Boolean algebra is a Heyting algebra.

Proof. Exercise.
A **Heyting algebra** is an algebraic structure of the form

\[\mathcal{L} = (L, \sqsubseteq, \lor, \land, \bot, \top, \rightarrow) \]

where:

- \(\mathcal{L} = (L, \sqsubseteq, \lor, \land, \bot, \top) \) is a **bounded lattice** – **not** necessarily a **complemented lattice**,
Heyting Algebras: definitions and examples

A Heyting algebra is an algebraic structure of the form

\[\mathcal{L} = (L, \leq, \lor, \land, \bot, \top, \rightarrow) \]

where:

\[\mathcal{L} = (L, \leq, \lor, \land, \bot, \top) \] is a bounded lattice – not necessarily a complemented lattice,

The new operation “→” is binary and satisfies the equations:

1. \(a \rightarrow a = \top \)
2. \(a \land (a \rightarrow b) = a \land b \)
3. \(a \rightarrow (b \land c) = (a \rightarrow b) \land (a \rightarrow c) \)
4. \(b \leq a \rightarrow b \)
Heyting Algebras: definitions and examples

- A **Heyting algebra** is an algebraic structure of the form

\[L = (L, \leq, \lor, \land, \bot, \top, \rightarrow) \]

where:

- \(L = (L, \leq, \lor, \land, \bot, \top) \) is a **bounded lattice** – **not** necessarily a **complemented lattice**,

- The new operation “→” is **binary** and satisfies the **equations**:

1. \(a \rightarrow a = \top \)
2. \(a \land (a \rightarrow b) = a \land b \)
3. \(a \rightarrow (b \land c) = (a \rightarrow b) \land (a \rightarrow c) \)
4. \(b \leq a \rightarrow b \)

FACT: The preceding equations uniquely define the operation “→”.

Proof. Exercise.
A **Heyting algebra** is an algebraic structure of the form

\[\mathcal{L} = (L, \leq, \lor, \land, \bot, \top, \rightarrow) \]

where:

- \(\mathcal{L} = (L, \leq, \lor, \land, \bot, \top) \) is a **bounded lattice** – not necessarily a **complemented lattice**,

- The new operation “\(\rightarrow \)” is **binary** and satisfies the **equations**:

 1. \(a \rightarrow a = \top \)
 2. \(a \land (a \rightarrow b) = a \land b \)
 3. \(a \rightarrow (b \land c) = (a \rightarrow b) \land (a \rightarrow c) \)
 4. \(b \leq a \rightarrow b \)

FACT: The preceding equations uniquely define the operation “\(\rightarrow \)”.
Proof. Exercise.

FACT: Every Boolean algebra is a Heyting algebra.
Proof. Exercise.