Model Checking: Translating (Propositional) LTL into First-Order Logic

Assaf Kfoury

March 25, 2015
translating propositional LTL into FOL

▶ consider FOL models \(\mathcal{M} \) over \(\mathbb{N} = \{ 0, 1, 2, \ldots \} \) with \(\mathcal{F} = \emptyset \) and \(\mathcal{R} = \{ < \} \cup \{ \text{propositional variables used as unary predicates} \} \)

(Sometimes this is called FOMLO = “First-Order Monadic Logic of Linear Order”)

▶ translation function \(\llbracket - \rrbracket (t) : \{ \text{LTL formulas} \} \times \mathbb{N} \to \{ \text{FOL formulas} \} \)

▶ \(\llbracket p \rrbracket (t) = p(t) \)

▶ \(\llbracket \varphi \land \psi \rrbracket (t) = \llbracket \varphi \rrbracket (t) \land \llbracket \psi \rrbracket (t) \)

▶ \(\llbracket \neg \varphi \rrbracket (t) = \neg \llbracket \varphi \rrbracket (t) \)

▶ \(\llbracket X \varphi \rrbracket (t) = \llbracket \varphi \rrbracket (t + 1) \)

▶ \(\llbracket F \varphi \rrbracket (t) = \exists t' [t' \geq t \land \llbracket \varphi \rrbracket (t')] \)

▶ \(\llbracket G \varphi \rrbracket (t) = \forall t' [t' \geq t \rightarrow \llbracket \varphi \rrbracket (t')] \)

▶ \(\llbracket \varphi \mathbf{U} \psi \rrbracket (t) = \exists t' [t' \geq t \land \llbracket \psi \rrbracket (t') \land \forall t'' [t \leq t'' < t' \rightarrow \llbracket \varphi \rrbracket (t'')]] \)

▶ \ldots
Theorem. Let M be a transition system, i.e., M is a LTL model, and π a path in M. The following are equivalent assertions, for every WFF φ of LTL and every $i \geq 0$ (not $i \geq 1$ as in the book):

1. $\pi^i \models_{LTL} \varphi$
2. there is a FOL model N such that $N \models_{FOL} [\varphi](i)$

where N is over the vocabulary $F = \emptyset$ and $R = \{<\} \cup \{\text{propositional variables used as unary predicates}\}$

Corollary. The following are equivalent, for every WFF φ of LTL:

1. $\models_{LTL} \varphi$, i.e., φ is semantically valid in LTL.
2. $\models_{FOL} \forall t \ (\llbracket \varphi \rrbracket(t))$, i.e., $\forall t \ (\llbracket \varphi \rrbracket(t))$ is semantically valid in FOL.
Question:

Is there a translation in the opposite direction, from FOL to LTL?

More precisely, is it the case that for every WFF φ of “first-order monadic logic of linear order” we can define a WFF ψ of LTL such that:

φ is semantically valid iff ψ is semantically valid?

Answer:

YES, by Kamp’s Theorem.