Problem 1. Software Modeling, Regular Expressions, LTL Model Checking. Consider a fragment of a concurrent program with two threads, P and Q, sharing one variable n:

\[
\begin{array}{c|c}
\text{print } a ; & \text{print } b ; \quad n := 0 \\
\hline
\text{thread } P & \text{thread } Q \\
1 \quad \text{repeat} & 1 \quad \text{repeat} \\
2 \quad \text{begin print } a ; & 2 \quad \text{begin print } b ; \\
3 \quad n := n + 1 ; & 3 \quad n := n - 1 ; \\
4 \quad \text{if } n = 3 \text{ repeat} & 4 \quad \text{if } n = -3 \text{ repeat} \\
5 \quad \text{begin print } c ; \langle \ldots \rangle & 5 \quad \text{begin print } d ; \langle \ldots \rangle \\
6 \quad \text{end} ; & 6 \quad \text{end} ; \\
7 \quad \text{end} ; & 7 \quad \text{end} ; \\
\end{array}
\]

We take the outer \texttt{begin-end} block in each of the two threads as a “critical section” which is entirely executed without any interference from the other thread. (The ellipses $\langle \ldots \rangle$ in line 5, in both P and Q, are portions of the program that are not relevant for our analysis here.) Once lines 2-7 in thread P starts executing, there is no interleaving with any of lines 2-7 in thread Q, and vice-versa. Interleaving only occurs between \textit{full outer} \texttt{begin-end} blocks, and not between portions of them. There are 5 parts in this problem.

(1) Define a transition system M modeling the behavior of the two threads P and Q by drawing its diagram. In this part (1), ignore the printouts $\{a, b, c, d\}$.

Draw M with 7 states, denoted $\{s[0], s[1], s[-1], s[2], s[-2], s[3], s[-3]\}$, corresponding to the 7 possible values of the shared variable n. Take $s[0]$ as the start state of M.

\[\text{Answer:}\]

\[\begin{array}{c|c|c|c}
\text{State} & \text{Transition} & \text{State} & \text{Transition} \\
\hline
s(0) & s(1) & s(2) & s(3) \\
\hline
s(1) & \langle b \rightarrow a \rightarrow a \rightarrow c \rangle & s(2) & \langle a \rightarrow b \rightarrow b \rightarrow d \rangle \\
\hline
\end{array}\]

(2) Consider the case when $\{a, b, c, d\}$ are labels for the transitions. We can thus use label “a” to identify the transition from state $s[0]$ to state $s[1]$ by writing $s[0] \xrightarrow{a} s[1]$, and we can use
label “b” to identify the transition from state $s[0]$ to state $s[−1]$ by writing $s[0] \xrightarrow{b} s[−1]$, etc. We can also label with “ab” the arrow identifying $s[0]$ as the start state, because of the “print a” and “print b” (in that order) before the threads P and Q are entered.

Your task is to write regular expressions E_0, E_1, and E_2, over alphabet $\{a, b, c, d\}$ such that:

- E_0 denotes all finite sequences of transitions from $s[0]$ back to $s[0]$ without visiting $s[0]$ in any intermediate step.
- E_1 denotes all finite sequences of transitions from $s[0]$ to $s[3]$.
- E_2 denotes all finite sequences of transitions from $s[0]$ to $s[−3]$.

Hint for (2): Write E_1 and E_2 using E_0.

Answer:

\[
E_0 = a (ab)^* b + b (ba)^* a \\
E_1 = (E_0)^* a (ab)^* a \ a c^* \\
E_2 = (E_0)^* b (ba)^* b b d^*
\]

(3) Consider again the case when $\{a, b, c, d\}$ are labels for the transitions. Your task is to write two ω-regular expression F_1 and F_2 over the alphabet $\{a, b, c, d\}$ such that: F_1 denotes all infinite sequences of transitions that start at state $s[0]$ and visit state $s[3]$ infinitely often, and F_2 denotes all infinite sequences of transitions that start at state $s[0]$ and visit state $s[−3]$ infinitely often.

Hint for (3): Use regular expression E_1 and E_2 from part (2).

Answer: Following the hint,

\[
F_1 = (E_0)^* a (ab)^* a \ a c^\omega \\
F_2 = (E_0)^* b (ba)^* b b d^\omega
\]

where E_0 is defined in the answer for (2).

(4) For this part, we view $\{a, b, c, d\}$ as atomic propositions which are labels for the states (not the transitions) in M. For example, if S is the set of states and L is the labelling function,

\[
S = \{s[0], \ldots, s[−3]\} \quad \text{and} \quad L : S \rightarrow \{\text{propositional WFF’s over } \{a, b, c, d\}\},
\]

then we can write $L(s[0]) = (a \lor b)$ to indicate that atom a or atom b (or both) are true at state $s[0]$, i.e., to mean that “if execution is at state $s[0]$, then this follows an action a or an action b (or both)”.

Your task is to complete the definition of the labelling function L.

Answer: Following the hint,

\[
L(s[0]) \triangleq (a \lor b) \quad L(s[1]) \triangleq (a \lor b) \quad L(s[2]) \triangleq a \quad L(s[3]) \triangleq (a \lor c) \\
L(s[−1]) \triangleq (a \lor b) \quad L(s[−2]) \triangleq b \quad L(s[−3]) \triangleq (b \lor d)
\]
(5) This is a continuation of part (4). We are given three LTL formulas:

\[\varphi_1 \triangleq GF (c \lor d), \quad \varphi_2 \triangleq G ((a \lor b) \rightarrow XXX (c \lor d)), \quad \varphi_3 \triangleq ((a \lor b) W (c \lor d)). \]

For each LTL formula \(\varphi_i \) above, with \(i \in \{1, 2, 3\} \), your task is twofold:

1. Find a path \(\pi_i \) in \(M \) (whose first state is the start state \(s[0] \)) such that \(M, \pi_i \models \varphi_i \).
2. Decide whether \(M \models \varphi_i \).

Answer: Consider each formula in turn:

- Any \(\omega \)-path \(\pi_1 \) reaching state \(s[3] \) or state \(s[-3] \) is such that \(M, \pi_1 \models \varphi_1 \).
 However, \(M \not\models \varphi_1 \), because there are \(\omega \)-paths \(\rho \) such that \(M, \rho \not\models \varphi_1 \). For example, take \(\rho \) as the path that keeps going around the cycle \(s[0] s[1] s[0] \) for ever.

- Any \(\omega \)-path \(\pi_2 \) reaching state \(s[3] \) or state \(s[-3] \) is such that \(M, \pi_2 \models \varphi_2 \).
 However, \(M \not\models \varphi_2 \), because there are \(\omega \)-paths \(\rho \) such that \(M, \rho \not\models \varphi_2 \). For example, take \(\rho \) as the path that keeps going around the cycle \(s[0] s[1] s[0] \) for ever.

- We can take \(\pi_3 \) to be any \(\omega \)-path from \(s[0] \), without restriction, in order to get \(M, \pi_3 \models \varphi_3 \).
 Hence, a fortiori, \(M \models \varphi_3 \).

Note that if \(\varphi_3 \) were re-written using “U” instead of “W”, to obtain \(\varphi'_3 \), say, then \(M \not\models \varphi'_3 \).

![Figure 1](image_url)

Figure 1: Graphical representation of the discrete-time Markov chain \(A \) in Problem 2.

Propositional atom \(a \) is true in states \(s_3 \) and \(s_4 \), and \(b \) is true in state \(s_4 \) (the green states).

Problem 2. Probabilistic Model Checking. Figure 1 shows a discrete-time Markov chain \(A \):

\[
A \triangleq (S, P, \text{init}, \text{AP}, L) \quad \text{where}
\]

\[
S \triangleq \{s_0, s_1, s_2, s_3, s_4, s_5\}, \quad \text{(set of states)},
\]

\[
P : S \times S \rightarrow [0, 1] \quad \text{(probabilistic transition function)},
\]

\[
\text{init} \triangleq (1, 0, 0, 0, 0, 0) \quad \text{(initial state distribution)},
\]

\[
\text{AP} \triangleq \{a, b\} \quad \text{(atomic propositions)},
\]

\[
L : S \rightarrow 2^{\text{AP}} \quad \text{(labelling function)}.
\]
(6) Write the right-stochastic matrix M representing the transition function P:

Answer:

$$M = \begin{bmatrix}
0 & 0.5 & 0.5 & 0 & 0 & 0 \\
0.5 & 0 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.5 & 0.5 \\
0 & 0 & 0 & 1.0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1.0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1.0
\end{bmatrix}$$

We consider three WFF’s in the syntax of LTL:

$$\varphi_1 \triangleq F(a \land b), \quad \varphi_2 \triangleq XF a, \quad \text{and} \quad \varphi_3 \triangleq G(\varphi_1 \lor \varphi_2).$$

before embedding them in PCTL, as follows:

$$\varphi_1' \triangleq F^{\geq 1/2}(a \land b), \quad \varphi_2' \triangleq X^{\geq 1/2}F^{\geq 1/2} a, \quad \text{and} \quad \varphi_3' \triangleq G^p(\varphi_1' \lor \varphi_2').$$

where p is a probability to be yet determined (in part (10) below).

(7) Compute the three probabilities p_1, p_2, and p_3, defined by:

$$p_1 \triangleq \Pr(\mathcal{A}, s_0 \models \varphi_1), \quad p_2 \triangleq \Pr(\mathcal{A}, s_0 \models \varphi_2), \quad \text{and} \quad p_3 \triangleq \Pr(\mathcal{A}, s_0 \models (\varphi_1 \lor \varphi_2)).$$

Answer: All ω-paths that reach state s_4 will satisfy φ_1, which implies that:

$$p_1 = \sum_{i \geq 0} (0.5 \times 0.5)^i \times 0.5 \times 0.5 = \sum_{i \geq 1} (0.25)^i$$

If you remember something from your calculus course, or you know something about infinite series, you can compute the exact value of p_1, which is $p_1 = 1/3$ (not “around 1/3” or $p_1 \approx 1/3$ or $p_1 \sim 1/3$, as some wrote in the exam). But there is a simpler way, further below.

All ω-paths that reach state s_3 or state s_4 will satisfy φ_2, which implies that:

$$p_2 = 2 \times \sum_{i \geq 0} (0.5 \times 0.5)^i \times 0.5 \times 0.5 = 2 \times \sum_{i \geq 1} (0.25)^i$$

Further below is a simple way of computing $p_2 = 2/3$.

The ω-paths satisfying φ_2 are also the ω-paths satisfying φ_3, so that $p_3 = 2/3$.

The simplest way to compute p_1, p_2, and p_3, is to notice: (a) every ω-path that reaches state s_3, or state s_4, or state s_5, occurs with the same probability:

$$(0.5 \times 0.5)^i \times 0.5 \times 0.5 = (0.25)^i \times 0.25$$

for some $i \geq 0$, and (b), as a consequence, the probabilities of reaching s_3, s_4, and s_5, are equal, and (c) the probability of reaching s_3 or s_4 or s_5 must be $1/3$ (since their sum must add up to 1).

Another way, not as simple, but still producing the exact values of p_1, p_2, and p_3, is to set up a system of linear equations, as on pages 26-27 of Handout 24.
Determine the largest possible probability p such that $A, \text{init} \models \varphi_1$ holds or not in PCTL (at most 3-4 lines).

Answer: $A, \text{init} \models \varphi_1$ does not hold. It is worth noting that it holds if execution starts with $(0, 0, 1, 0, 0)$ (initial state s_2) or with $(0, 0, 0, 1, 0)$ (initial state s_4).

(9) Give a rigorous argument whether the satisfaction statement $A, \text{init} \models \varphi_2$ holds or not in PCTL (at most 3-4 lines).

Answer: The states where a holds are s_3 and s_4. Using the same reasoning as in part (7):

- probability of reaching s_3 or s_4 from $s_1 = 3/4$
- probability of reaching s_3 or s_4 from $s_2 = 1/2$

Hence:

$A, \text{init}_1 \models \text{F}^{3/4} a$ where $\text{init}_1 = (0, 1, 0, 0, 0, 0)$, i.e., starting from s_1,

$A, \text{init}_2 \models \text{F}^{1/2} a$ where $\text{init}_2 = (0, 0, 1, 0, 0, 0)$, i.e., starting from s_2.

It follows that $A, \text{init}_1 \models \text{F}^{3/4} a$ and $A, \text{init}_2 \models \text{F}^{1/2} a$. And because s_1 or s_2 are reached from s_0 with probability $= 1$, i.e., each is reached from s_0 with probability $= 1/2$, we conclude $A, \text{init} \models \text{X}^{1/2} \text{F}^{3/4} a$ and, a fortiori, $A, \text{init} \models \text{X}^{1/2} \text{F}^{3/1/2} a$. Hence, $A, \text{init} \models \varphi_2$ does hold.

(8) Give a rigorous argument whether the satisfaction statement $A, \text{init} \models \varphi_1$ holds or not in PCTL (at most 3-4 lines).

(10) Determine the largest possible probability p such that: $A, \text{init} \models \varphi_3$. Justify your answer carefully (at most 3-4 lines).

Answer: $A, \text{init} \models \varphi_3$ holds for every init except init $= (0, 0, 0, 0, 1)$ (state s_5). Hence, $p = 2/3$.

Problem 3. **Modeling Transition Systems in Propositional Logic.** Consider the transition system \mathcal{N} shown in Figure 2: It has four states $\{s_0, s_1, s_2, s_3\}$ and its transitions are labelled with one of two actions: m or n. There are two atomic propositions: x and y. This is a deterministic system because, from every state s_i, there are two transitions, one labelled m and one labelled n.

We can fully describe \mathcal{N}’s behavior by a program \mathcal{P} written in pseudo-code as follows:

$$\mathcal{P} \triangleq \text{if current} = s_0 \text{ then } (\text{if action} = m \text{ then next} = s_1 \text{ else next} = s_3) \text{ else}$

$$\text{if current} = s_1 \text{ then } (\text{if action} = m \text{ then next} = s_2 \text{ else next} = s_3) \text{ else}$

$$\text{if current} = s_2 \text{ then } (\text{if action} = m \text{ then next} = s_0 \text{ else next} = s_2) \text{ else}$

$$\text{if current} = s_3 \text{ then } (\text{if action} = m \text{ then next} = s_3 \text{ else next} = s_3) \text{ else no op}$

Observe that program \mathcal{P} mentions action m but not action n, but this does not create any ambiguity in representing the behavior of \mathcal{N}, because whenever the test “action $= m$” fails, it implicitly means that the other action n succeeds. Moreover, program \mathcal{P} does not mention atoms x and y explicitly, but this too does not create any ambiguity in representing \mathcal{N}, because there is a one-one correspondence between the states in $\{s_0, s_1, s_2, s_3\}$ and the truth values of x and y.
Atom x is true at s_0, atom y is true at s_1, both atoms x and y are true at s_2, and neither x nor y are true in s_3. The green states are the states where only one of $\{x, y\}$, not both, is true.

- s_0 uniquely corresponds to $x = true$ and $y = false$,
- s_1 uniquely corresponds to $x = false$ and $y = true$,
- s_2 uniquely corresponds to $x = true$ and $y = true$,
- s_3 uniquely corresponds to $x = false$ and $y = false$.

(11) We can view the programming construct if-then-else as a ternary logical connective in propositional logic, whose meaning is given by the following truth-table:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>if p then q else r</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Show that if-then-else is an adequate logical connective, i.e., every propositional WFF φ is equivalent to a propositional WFF φ' where no connective other than if-then-else appears.
Answer: It suffices to show that any other set of connectives, already known adequate (for example \(\{\neg, \lor\}\) or \(\{\neg, \land\}\)), can be simulated with \textbf{if-then-else}. If we take \(\{\neg, \land\}\), we can define \(\neg\) and \(\land\) as follows:

\[
\begin{align*}
\neg x & \triangleq \text{if } x \text{ then } \bot \text{ else } \top \\
x \land y & \triangleq \text{if } x \text{ then } y \text{ else } \bot
\end{align*}
\]

(12) Show that program \(P\) can be translated into a single propositional WFF \(\Phi_N\) such that:

\begin{itemize}
 \item the only logical connective in \(\Phi_N\) is \textbf{if-then-else},
 \item there are no more than 5 propositional variables in \(\Phi_N\).
\end{itemize}

Hint for (12): Use part (11). Moreover, use 5 variables \(\{x, y, x', y', a\}\) such that the truth values of \(\{x, y\}\) correspond to “current state”, the truth values of \(\{x', y'\}\) correspond to “next state”, and the truth values of \(\{a\}\) indicate whether action \(m\) or action \(n\) is used to make the transition.

Answer:

\[
\Phi_N \triangleq \text{if } x \text{ then if } y \text{ then if } a \text{ then } x' \land \neg y' \\
&\quad\text{else } x' \land y' \\
&\quad\text{else if } a \text{ then } \neg x' \land y' \\
&\quad\text{else } \neg x' \land \neg y' \\
&\quad\text{else if } y \text{ then if } a \text{ then } x' \land y' \\
&\quad\text{else } \neg x' \land \neg y' \\
&\quad\text{else if } a \text{ then } \neg x' \land \neg y' \\
&\quad\text{else } \neg x' \land \neg y'
\]

where the last column has to be expanded further using \textbf{if-then-else}. For example, \(x' \land \neg y'\) should be expanded as:

\[
\text{if } x' \text{ then (if } y' \text{ then } \bot \text{ else } \top) \text{ else } \bot
\]

and similarly for the remaining entries in the last column, using the definitions of \(\neg\) and \(\land\) in part (11) in terms of \textbf{if-then-else}.

(13) This is a refinement of part (12). Show that program \(P\) can be translated into a single propositional WFF \(\Phi'_N\) such that:

\begin{itemize}
 \item the only logical connective in \(\Phi'_N\) is \textbf{if-then-else},
 \item there are no more than 4 propositional variables in \(\Phi'_N\).
\end{itemize}
Answer:

$$\Phi'_N \triangleq \text{if } x \text{ then if } y \text{ then } (x' \land \neg y') \lor (x' \land y')$$

$$\text{else if } y \text{ then } (x' \land y') \lor (\neg x' \land \neg y')$$

$$\text{else if } y \text{ then } (x' \land y') \lor (\neg x' \land \neg y')$$

Again here, the “\lor” in the last column has to be expanded further using if-then-else, based on the definitions in part (11).

(14) Given your representation of the 4 states of N with two propositional variables, as in part (12) or in part (13), write a propositional WFF $\varphi_{i,j}$ representing the set of states $\{s_i, s_j\}$ for each of the six possible combinations of two states:

- $\{s_0, s_1\}$
- $\{s_0, s_2\}$
- $\{s_0, s_3\}$
- $\{s_1, s_2\}$
- $\{s_1, s_3\}$
- $\{s_2, s_3\}$

We want to use such a WFF $\varphi_{i,j}$ to indicate that execution of N is in state s_i or in state s_j, i.e., for any assignment I of truth values to the propositional variables, we want:

$I \models \varphi$ iff “execution of N is in state s_i or in state s_j”

Hint for (14): Use any of the logical connectives, no need to restrict yourself to if-then-else.

Answer:

- $\{s_0, s_1\}$ represented by $\varphi_{0.1} \triangleq (x \land \neg y) \lor (\neg x \land y)$
- $\{s_0, s_2\}$ represented by $\varphi_{0.2} \triangleq (x \land y)$
- $\{s_0, s_3\}$ represented by $\varphi_{0.3} \triangleq (x \land y)$
- $\{s_1, s_2\}$ represented by $\varphi_{1.2} \triangleq (\neg x \land y)$
- $\{s_1, s_3\}$ represented by $\varphi_{1.3} \triangleq (\neg x \land y)$
- $\{s_2, s_3\}$ represented by $\varphi_{2.3} \triangleq (x \land y)$

(15) Consider the following WFF of LTL:

$$\theta \triangleq G(\varphi_{0.1} \rightarrow X(\varphi_{1.3} \lor \varphi_{2.3}))$$

where each $\varphi_{i,j}$ is defined in part (14). By inspection, the assertion $N \models_{\text{LTL}} \theta$ holds, according to the formal semantics of LTL. Your task is to translate the assertion “$N \models_{\text{LTL}} \theta$” into a WFF Ψ of propositional logic so that the truth of the assertion (at the meta-level) in LTL is equivalent to the satisfiability of Ψ in propositional logic.
Answer: (Details added on April 4, 2016.) Write $\varphi'_{i,j}$ for the WFF $\varphi_{i,j}$ after substituting x' for x and y' for y. The statement “$\mathcal{N} \models_{\text{LTL}} \theta$” is equivalent to the statement:

$$\Phi_N' \models_{\text{PL}} (\varphi_{0,1} \rightarrow (\varphi'_{1,3} \lor \varphi'_{2,3}))$$

because Φ_N' from part (13) is a complete description of \mathcal{N}, and $(\varphi_{0,1} \rightarrow (\varphi'_{1,3} \lor \varphi'_{2,3}))$ is a translation of θ in propositional logic (PL). Hence, by soundness of completeness of PL, we can write the sequent:

$$\Phi_N' \vdash_{\text{PL}} (\varphi_{0,1} \rightarrow (\varphi'_{1,3} \lor \varphi'_{2,3}))$$

which is derivable iff the following propositional WFF is valid:

$$\Phi_N' \rightarrow (\varphi_{0,1} \rightarrow (\varphi'_{1,3} \lor \varphi'_{2,3}))$$

Hence, the desired Ψ can be written as:

$$\Psi \triangleq \Phi_N' \rightarrow (\varphi_{0,1} \rightarrow (\varphi'_{1,3} \lor \varphi'_{2,3}))$$

which is valid iff the satisfaction statement “$\mathcal{N} \models_{\text{LTL}} \theta$” holds.

Problem 4. LTL Definability and CTL Definability.

(16) Write a LTL formula which enforces the following requirement in a transition system: At every state s, if p is true, then at every state s' reachable from s in one transition or more, if q is true, then r is false until t becomes true (for all continuations of the execution path starting at s').

Answer: Although the translation of informal requirements into formal specifications is generally fraught with ambiguities, in this case the informal requirement can be directly translated to:

$$G \left(p \rightarrow XG (q \rightarrow \neg r U t) \right)$$

(17) Write a LTL formula which enforces the following requirement in a a transition system: For every state s_i along an execution path $s_1 s_2 s_3 \cdots$, unless s_i is the first state s_1, if p is true in s_i, then p must be true in at least one of the two states just before s_i, i.e., in the states s_{i-1} and s_{i-2}.

Answer: The informal requirement in English can be directly translated to:

$$(Xp \rightarrow p) \land G (XXp \rightarrow p \lor Xp)$$

(18) Write a LTL formula which enforces the following requirement in a a transition system: In every odd state along an execution path $\pi = s_1 s_2 s_3 \cdots$ the atom p is true, and in every even state of the same path π the atom p is false.

Answer: The informal requirement in English can be directly translated to:

$$p \land G (p \leftrightarrow X\neg p)$$
Write a CTL formula (not LTL formula) which enforces the following requirement in a transition system: At every state \(s \), if \(p \) is true, then at every state \(s' \) reachable from \(S \) in one transition or more, if \(q \) is true, then \(r \) is false until \(t \) becomes true (for all continuations of the execution path starting at \(s' \)).

\textbf{Answer}: In this case, it suffices to insert the appropriate quantifiers into LTL formula in (16):

\[
AG \left(p \rightarrow AXAG (q \rightarrow A[\neg r U t]) \right)
\]

Write a CTL formula (not LTL formula) which enforces the following requirement in a transition system: There exists a path \(\pi \) such that, for every state \(s \) on \(\pi \), there exists a path \(\pi' \) starting at \(s \), which eventually enters a state \(s' \) where \(p \) is true and which, immediately after \(s' \), enters another state \(s'' \) where \(\neg p \) is true.

\textbf{Answer}: The informal requirement in English can be directly translated to:

\[
EG EF (p \land EX \neg p)
\]