Problem 3 solution has been taken from Sahil, Problem 5 and 6 solutions have been taken from Ben

1 Problem1:

1.1 Problem 1 a): \(P \rightarrow Q, P \rightarrow \neg Q \vdash \neg P \)

\[
\begin{array}{ll}
1 & P \rightarrow Q & \text{premise} \\
2 & P \rightarrow \neg Q & \text{premise} \\
3 & P & \text{assume} \\
4 & Q & \rightarrow \text{e } 1,3 \\
5 & \neg Q & \rightarrow \text{e } 2,3 \\
6 & \bot & \rightarrow \text{e } 4,5 \\
7 & \neg P & \rightarrow \text{i } 3,6 \\
\end{array}
\]
1.2 Problem 1 b): $P \rightarrow (Q \rightarrow R), P, \neg R \vdash \neg Q$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$P \rightarrow (Q \rightarrow R)$</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
</tr>
<tr>
<td>3</td>
<td>$\neg R$</td>
</tr>
<tr>
<td>4</td>
<td>$Q \rightarrow R$</td>
</tr>
<tr>
<td>5</td>
<td>Q</td>
</tr>
<tr>
<td>6</td>
<td>R</td>
</tr>
<tr>
<td>7</td>
<td>\bot</td>
</tr>
<tr>
<td>8</td>
<td>$\neg Q$</td>
</tr>
</tbody>
</table>

2 Problem 2:

2.1 a)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\neg P \rightarrow \neg Q$</td>
</tr>
<tr>
<td>2</td>
<td>$\neg \neg Q$</td>
</tr>
<tr>
<td>3</td>
<td>$\neg \neg P$</td>
</tr>
<tr>
<td>4</td>
<td>$\neg \neg Q \rightarrow \neg \neg P$</td>
</tr>
<tr>
<td>5</td>
<td>$Q \rightarrow P$</td>
</tr>
</tbody>
</table>
2.2 b)

<table>
<thead>
<tr>
<th>Step</th>
<th>Formula</th>
<th>Type</th>
<th>Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\neg P \lor \neg Q)</td>
<td>premise</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(\neg P)</td>
<td>assume</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(P \land Q)</td>
<td>assume</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(P)</td>
<td></td>
<td>(\land e_1) \ 3</td>
</tr>
<tr>
<td>5</td>
<td>(\bot)</td>
<td></td>
<td>(\neg e) \ 2, 4</td>
</tr>
<tr>
<td>6</td>
<td>(\neg (p \land q))</td>
<td>(\neg i) \ 3 – 5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(\neg Q)</td>
<td>assume</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>(P \land Q)</td>
<td>assume</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>(Q)</td>
<td></td>
<td>(\land e_2) \ 8</td>
</tr>
<tr>
<td>10</td>
<td>(\bot)</td>
<td></td>
<td>(\neg e) \ 7, 9</td>
</tr>
<tr>
<td>11</td>
<td>(\neg (p \land q))</td>
<td>(\neg i) \ 8 – 10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>(\neg (p \land q))</td>
<td>(\lor e) \ 1, 2 – 6, 7 – 11</td>
<td></td>
</tr>
</tbody>
</table>

2.3 c)

<table>
<thead>
<tr>
<th>Step</th>
<th>Formula</th>
<th>Type</th>
<th>Lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\neg P)</td>
<td>premise</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(P \lor Q)</td>
<td>premise</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(P)</td>
<td>assume</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(\bot)</td>
<td></td>
<td>(\neg e) \ 1, 3</td>
</tr>
<tr>
<td>5</td>
<td>(Q)</td>
<td></td>
<td>(\bot e) \ 4</td>
</tr>
<tr>
<td>6</td>
<td>(Q)</td>
<td>assume</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(Q)</td>
<td></td>
<td>(\lor e) \ 2, 3 – 5, 6</td>
</tr>
</tbody>
</table>
2.4 d)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$P \lor Q$</td>
<td>premise</td>
</tr>
<tr>
<td>2</td>
<td>$\neg Q \lor R$</td>
<td>premise</td>
</tr>
<tr>
<td>3</td>
<td>$\neg Q$</td>
<td>assume</td>
</tr>
<tr>
<td>4</td>
<td>$P \lor Q$</td>
<td>copy 1</td>
</tr>
<tr>
<td>5</td>
<td>P</td>
<td>assume</td>
</tr>
<tr>
<td>6</td>
<td>$P \lor R$</td>
<td>$\lor i$ 5</td>
</tr>
<tr>
<td>7</td>
<td>Q</td>
<td>assume</td>
</tr>
<tr>
<td>8</td>
<td>\bot</td>
<td>$\neg e$ 3,7</td>
</tr>
<tr>
<td>9</td>
<td>$P \lor R$</td>
<td>$\bot e$ 8</td>
</tr>
<tr>
<td>10</td>
<td>$P \lor R$</td>
<td>$\lor e$ 4, 5, 6, 7, 9</td>
</tr>
<tr>
<td>11</td>
<td>R</td>
<td>assume</td>
</tr>
<tr>
<td>12</td>
<td>$P \lor R$</td>
<td>$\lor i$ 11</td>
</tr>
<tr>
<td>13</td>
<td>$P \lor R$</td>
<td>$\lor e$ 2, 3, 10, 11, 12</td>
</tr>
</tbody>
</table>
1 Question 3: taken from Sahil

Consider a parse tree for a given WFF \(\varphi \) with number of literals as \(c \), \(s \) and \(n \). In the tree, all \(s \) atoms lie at the leaf level. All \(n \ \neg \) are immediately following the atoms (like NNF).

In this case, the value of \(n \) becomes irrelevant since it does not affect the height of the parse tree. And we have \(n + s = n \).

The internal nodes, \(c \) logical connectives are all binary operators: \(\land \), \(\lor \) and \(\rightarrow \).

This results into a completely filled binary tree. Such tree with \(X \) leaf nodes has \((X - 1) \) internal nodes.

\(X \) corresponds to \(s \) and \((X - 1) \) corresponds to \(c \).

Therefore after substitution, we get \(c = (s - 1) \).

And if we consider \(| \varphi | = l \),

\(c + n + s = l \).
1 Problem 4:

From definition of ϕ^* we have
- if $\phi = \alpha \land \beta$ then $\phi^* = \alpha^* \lor \beta^*$
- if $\phi = \alpha \lor \beta$ then $\phi^* = \alpha^* \land \beta^*$
- if $\phi = \neg \alpha$ then $\phi^* = \neg \alpha^*$
- if $\phi = p$ then $\phi^* = \neg p$, that is for ϕ with a tree depth 1, $\phi^* \equiv \neg \phi$

Let us assume the tree depth of the formula ϕ is K and that for every formula ψ of depth $K' \leq K$ $\psi^* \equiv \neg \psi$ then
- if $\phi = \alpha \land \beta$ then $\phi^* \equiv \neg \alpha \lor \neg \beta \equiv \neg (\alpha \land \beta) \equiv \neg \phi$
- if $\phi = \alpha \lor \beta$ then $\phi^* \equiv \neg \alpha \land \neg \beta \equiv \neg (\alpha \lor \beta) \equiv \neg \phi$
- if $\phi = \neg \alpha$ then $\phi^* \equiv \neg \neg \alpha \equiv \neg \phi$

Hence, ϕ^* is tautologically equivalent to $\neg \phi$
5 Page 87, Exercise 1.5.3

5.1 Show that (¬, ∧), (¬, →) and (¬, ⊥) are adequate sets of connectives for propositional logic.

For (¬, ∧):

• Intend to show the following:
 1. \(A \lor B \equiv (\neg A \land \neg B)\)
 2. \(A \rightarrow B \equiv (A \land \neg B)\)

• So for (1), we already know that \(A \lor B \equiv (\neg A \land \neg B)\) from the third truth table in Problem 4.

• For (2), the following truth table will suffice:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(A → B)</th>
<th>¬(A ∧ ¬B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

For (¬, →):

• We only need to show the following:
 1. \(A \lor B \equiv \neg A \rightarrow B\)
 2. \(A \land B \equiv (A \rightarrow \neg B)\)
• For (1), the following truth table will suffice:

<table>
<thead>
<tr>
<th>A B</th>
<th>(((A \lor B) \leftrightarrow (\neg A \rightarrow B)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T T</td>
<td>T T T T T T T T</td>
</tr>
<tr>
<td>T F</td>
<td>T T F T T T F F</td>
</tr>
<tr>
<td>F T</td>
<td>T T T T T T T F</td>
</tr>
<tr>
<td>F F</td>
<td>F F F F F T T T</td>
</tr>
</tbody>
</table>

• For (2):

<table>
<thead>
<tr>
<th>A B</th>
<th>(((A \land B) \leftrightarrow \neg (A \rightarrow \neg B)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T T</td>
<td>T T T T T T T F F</td>
</tr>
<tr>
<td>T F</td>
<td>T F F T T F T T</td>
</tr>
<tr>
<td>F T</td>
<td>T F F F F T T T</td>
</tr>
<tr>
<td>F F</td>
<td>F F F F F T T T</td>
</tr>
</tbody>
</table>

For \((\rightarrow, \bot)\):

• Need to show the following:
 1. \(\neg A \equiv A \rightarrow \bot\)
 2. \(A \land B \equiv ((A \rightarrow (B \rightarrow \bot)) \rightarrow \bot)\)
 3. \(A \lor B \equiv ((A \rightarrow \bot) \rightarrow B)\)

• For (1):

<table>
<thead>
<tr>
<th>A B</th>
<th>(((A \rightarrow \bot) \leftrightarrow \neg A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T T</td>
<td>T T T T T T</td>
</tr>
<tr>
<td>T F</td>
<td>T F F F F F</td>
</tr>
</tbody>
</table>

• For (2):

<table>
<thead>
<tr>
<th>A B</th>
<th>(((A \land B) \leftrightarrow ((A \rightarrow (B \rightarrow \bot)) \rightarrow \bot)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T T</td>
<td>T T T T T T T T T</td>
</tr>
<tr>
<td>T F</td>
<td>T F T T T F T T T</td>
</tr>
<tr>
<td>F T</td>
<td>T F T T T T T T F</td>
</tr>
<tr>
<td>F F</td>
<td>F F F F F T T T T</td>
</tr>
</tbody>
</table>

• For (3):

<table>
<thead>
<tr>
<th>A B</th>
<th>(((A \lor B) \leftrightarrow ((A \rightarrow \bot) \rightarrow B)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T T</td>
<td>T T T T T T T T</td>
</tr>
<tr>
<td>T F</td>
<td>T T T T T T T T</td>
</tr>
<tr>
<td>F T</td>
<td>T T T T T T T T</td>
</tr>
<tr>
<td>F F</td>
<td>F F T T T T T T</td>
</tr>
</tbody>
</table>
5.2 Show that if \(C \subseteq (\neg, \land, \lor, \to, \perp) \) is adequate for propositional logic, then \(\neg \in C \) or \(\perp \in C \).

- Suppose \(C \) contains neither \(\neg \) nor \(\perp \). Then \(C = (\land, \lor, \to) \). Now, consider a simple WFF \(A \land B \), and another \(\neg (A \land B) \):

 \[
 \begin{array}{c|c|c|c}
 A & B & (A \land B) \\
 \hline
 T & T & T \\
 T & \bot & T \\
 \bot & T & \bot \\
 \bot & \bot & \bot \\
 \end{array}
 \]

 \[
 \begin{array}{c|c|c|c}
 A & B & \neg (A \land B) \\
 \hline
 T & T & \bot \\
 T & \bot & \bot \\
 \bot & T & \bot \\
 \bot & \bot & \bot \\
 \end{array}
 \]

- One can see that it would be impossible to express a WFF like \(\neg (A \land B) \) for valuations in which both \(A \) and \(B \) are true using only the connectives \(\land, \lor, \) and \(\to \). The same follows for the formulas \(A \lor B \) and \(A \to B \). That is, using only the connectives \(\land, \lor, \) and \(\to \), we could never construct a WFF which was false when all of it’s propositional atoms were assigned true.

5.3 Is \((\leftrightarrow, \neg) \) adequate? Prove your answer.

- First, look at the truth table for \(A \leftrightarrow B \), along with \(\neg A \leftrightarrow B \) and \(\neg (A \leftrightarrow B) \):

 \[
 \begin{array}{c|c|c}
 A & B & (A \leftrightarrow B) \\
 \hline
 T & T & T \\
 T & \bot & \bot \\
 \bot & T & \bot \\
 \bot & \bot & T \\
 \end{array}
 \]

 \[
 \begin{array}{c|c|c}
 A & B & \neg (A \leftrightarrow B) \\
 \hline
 T & T & \bot \\
 T & \bot & T \\
 \bot & T & \bot \\
 \bot & \bot & \bot \\
 \end{array}
 \]
From the truth tables above, it is apparent that, using only \leftrightarrow and \neg, one can only express WFFs with an even number of valuations in which they are true (the same is true for falsity). But we know from the truth tables from a WFF like $A \leftarrow B$, for example, that there are infinitely many WFFs which have an odd number of valuations for which the WFF is true. Therefore, $\langle \leftrightarrow, \neg \rangle$ is an insufficient set of connectives for propositional logic.

Show that $\langle \#A, \neg \rangle$ is not an adequate set of connectives for propositional logic.

Suppose we were trying to express a WFF with only two propositional atoms, such as $A \land B$. We could try to find an equivalence in an expression like $\langle \#A, \neg A, B \rangle$, but the truth table for that expression includes only an even number of valuations for which it is true (and, conversely, false). And we know that the truth table for $A \land B$ contains only one valuation for which it is true, namely, when both A and B are true. It follows that $A \land B$ is inexpressible using only the set $\langle \#, \neg \rangle$ of connectives, and therefore such a set is insufficient for propositional logic.