Problem 1

This is a problem in modeling execution of a (tiny!) program with LTL, prior to verifying with an automated model-checker whether some properties are satisfied by that program. Consider a fragment of a concurrent program with two threads, \(P \) and \(Q \), which share the variable \(n \):

\[
\begin{array}{c}
\text{print } a ; \text{ print } b ; \ n := 0 \\
\text{thread } P \hspace{5cm} \text{thread } Q \\
1 \hspace{1cm} \text{repeat} & 1 \hspace{1cm} \text{repeat} \\
2 \hspace{1cm} \text{begin} \text{ print } a ; & 2 \hspace{1cm} \text{begin} \text{ print } b ; \\
3 \hspace{1cm} \quad \ n := n + 1 ; & 3 \hspace{1cm} \quad \ n := n - 1 ; \\
4 \hspace{1cm} 4 \hspace{1cm} \quad \text{if } n = 2 & 4 \hspace{1cm} \quad \text{if } n = -2 \\
5 \hspace{1cm} \quad \text{begin} \text{ print reset } ; & 5 \hspace{1cm} \text{begin} \text{ print target } ; \\
6 \hspace{1cm} \quad \quad \ n := 0 & 5 \hspace{1cm} \quad \quad \ n := 0 ; \text{ stop thread } Q \\
7 \hspace{1cm} \text{end} & 7 \hspace{1cm} \text{end} \\
8 \hspace{1cm} \text{end} & 8 \hspace{1cm} \text{end}
\end{array}
\]

We take a \texttt{begin-end} block in each thread above as a “critical section” which is entirely executed without any interference from the other thread. This means that, once lines 2-8 in thread \(P \) starts executing, there is no interleaving with any of lines 2-8 in thread \(Q \), and vice-versa. Interleaving only occurs between \texttt{full begin-end} blocks, and not between portions of them. There are 5 parts in this problem.

(1) Define a transition system \(\mathcal{M} \) modeling the behavior of the two threads \(P \) and \(Q \) by drawing its diagram. In this part (1), ignore the printouts \{a, b, reset, target\}.

\textit{Hint for (1):} Draw the diagram of \(\mathcal{M} \) as a transition system with 8 states:

- 5 states when both \(P \) and \(Q \) are running and variable \(n \) stores an integer \(i \in \{0, 1, 2, -1, -2\} \). Denote by \(s[P, Q, i] \) the state of \(\mathcal{M} \) when \(P \) and \(Q \) are running and \(n \) stores \(i \).
- 3 states when only \(P \) is running and variable \(n \) stores an integer \(i \in \{0, 1, 2\} \). Denote by \(s[P, i] \) the state of \(\mathcal{M} \) when only \(P \) is running and \(n \) stores \(i \).

Take \(s[P, Q, 0] \) as the start state of \(\mathcal{M} \).

We can incorporate the printouts \{a, b, reset, target\} as labels in the model \(\mathcal{M} \) in two different ways, in parts (2) and (3) first, and then in parts (4) and (5).
(2) Consider the case when \(\{a, b, \text{reset}, \text{target}\} \) are labels for the transitions. For example, we can use label \(a \) to identify the transition from state \(s[P, Q, 0] \) to state \(s[P, Q, 1] \) by writing \(s[P, Q, 0] \xrightarrow{a} s[P, Q, 1] \), and we can use label \(b \) to identify the transition from state \(s[P, Q, 0] \) to state \(s[P, Q, -1] \) by writing \(s[P, Q, 0] \xrightarrow{b} s[P, Q, -1] \), etc.

Your task is to write a regular expression \(E \) over the alphabet \(\{a, b, r, t\} \) that denotes all finite sequences of transitions from \(s[P, Q, 0] \) back to \(s[P, Q, 0] \).

Hint for (2): For every \(i \in \{1, 2, -1\} \), define a regular expression \(E[P, Q, i] \) where \(i \neq 0 \) which denotes the sequences of transitions from \(s[P, Q, 0] \) to \(s[P, Q, i] \) without visiting these two states more than once each, followed by the sequences of transitions from \(s[P, Q, i] \) back to \(s[P, Q, 0] \) without visiting these two states more than once each. Try to write the desired \(E \) by using the three regular expressions \(E[P, Q, 1] \), \(E[P, Q, 2] \), and \(E[P, Q, -1] \).

(3) Consider again the case when \(\{a, b, \text{reset}, \text{target}\} \) are labels for the transitions. Your task is to write an \(\omega \)-regular expression \(F \) over the alphabet \(\{a, b, r, t\} \) that denotes all infinite sequences of transitions that start at state \(s[P, Q, 0] \) and visit state \(s[P, 0] \) infinitely often.

Hint for (3): Use regular expression \(E \) from part (2).

(4) For this part, we view \(\{a, b, r, t\} \) as atomic propositions which are labels for the states (not the transitions) in \(M \). For example, if \(S \) is the set of states and \(L \) is the labelling function,

\[
S = \{s[P, Q, 0], \ldots, s[P, 2]\} \quad \text{and} \quad L : S \rightarrow \text{propositional WFF's over} \{a, b, r, t\},
\]

then we can write \(L(s[P, Q, 0]) = \{a \land b\} \) to mean that the propositional WFF \(a \land b \) is true at state \(s[P, Q, 0] \); and \(L(s[P, Q, 1]) = \{a\} \) to mean that the atom \(a \) is true at \(s[P, Q, 1] \); etc.

Your task is to complete the definition of the labelling function \(L \).

(5) This is a continuation of part (4). We are given the three LTL formulas:

\[
\varphi_1 \triangleq \mathbf{G} r, \quad \varphi_2 \triangleq \mathbf{G} \left((r \lor t) \rightarrow (\mathbf{X} a \land \mathbf{X} \mathbf{X} a) \right), \quad \varphi_3 \triangleq \left((a \lor b \lor r) \mathbf{U} t \right).
\]

For each LTL formula \(\varphi_i \) above, with \(i \in \{1, 2, 3\} \), your task is twofold:

1. Find a path \(\pi_i \) in \(M \) (whose first state is the start state \(s[P, Q, 0] \)) such that \(M, \pi_i \models \varphi_i \).
2. Decide whether \(M \models \varphi_i \).

Problem 2 [LCS, page 246]: Exercise 3.2.8. You need to extend the algorithm NNF on page 62, which is defined for propositional WFFs only, to all the WFFs of LTL.

1Use \(\{a, b, r, t\} \) instead of \(\{a, b, \text{reset}, \text{target}\} \) for simplicity.