Problem Set Eight Answer Key

Solutions taken from various students

April 14, 2016

Problem 1: Credit to Jennifer Collins

a) \(A \not\models_{LTL} \varphi_1 \). We know this to be the case via the following counterexample. Let \(\pi' = (s_0s_3s_4)^* \) (i.e. a continuous loop through states \(s_0, s_3, s_4 \)). Since we are always moving between \(p \) and \(\neg p \) and we never reach a state where \(\neg p \) is continuously true, we do not have a situation of \(FG \neg p \). Therefore, \(A \not\models_{LTL} \varphi_1 \).

b) \(A \models_{LTL} \varphi_2 \). We can see that this is true by looking at the possible path options for \(\pi \). One option is to perpetually cycle through \(s_0s_3s_4 \), the second is to go \(s_0s_1 \) and then \(s_2 \) forever, or we can have our first option eventually lead into the second cycle. In every situation, it is always true that at some point we will reach a state where \(\neg p \) is true. Therefore, \(A \models_{LTL} \varphi_2 \).

c) \(A \models_{LTL} \varphi_3 \). We can see that this is true by once more looking at the possible path options and see if there is a future state where our present state is \(p \) and our next state is also \(p \). If our path goes through the \(s_0s_3s_4 \) loop, we can see that at \(s_4 \) we have \(p \) and our next state \((s_0) \) will also be \(p \). Therefore this path option satisfies the condition. Our other path option is to follow \(s_0s_1s_2 \). In this case, when we are at \(s_0 \) our state is \(p \) and our next state will be \(s_1 \) which will also have a state of \(p \). Therefore, \(A \models_{LTL} \varphi_3 \).

Problem 2: Credit to Rebecca Graber

a) \(\varphi'_1 \triangleq \forall F \forall G \neg p \)
No: \(A, s_0 \not\models \varphi'_1 \)

b) \(\varphi'_2 \triangleq \forall G \forall F \neg p \)
Yes: From every state, every infinite path will include \(s_3 \) or \(s_2 \), where \(p \) is false.

c) \(\varphi'_3 \triangleq \forall F(p \land \forall X p) \)
No: \(A, s_1 \not\models \varphi'_3 \)
Problem 3: Credited to Jennifer Collins

Note: there are multiple correct answers to this problem. I just chose one such correct example.

As was seen in the earlier problems, consider the LTL WFF $\varphi \triangleq F(p \land Xp)$. Through problems 1 and 2 we demonstrated that $A \models_{LTL} \varphi$ but $A \not\models_{CTL} \forall[\varphi]$

Problem 4: Credited to Jennifer Collins, Professor Kfoury, and Rebecca Graber respectively

Note: there are multiple correct answers to these problems. I just chose one such correct form.

a) $L(E) = (abb)^*ab(a^*)$.
This can be determined by combining the two possible loops: $s_0s_3s_4 \rightarrow ((abb)^*)$ and $s_0s_1(s_2)^* \rightarrow (ab(a)^*)$

b) $L(G) = (abb)^*aba^\omega + (abb)^\omega$

c) Yes there is an infinite path π in A' with the specified conditions. We will define the path and $\text{trace}(\pi)$ below:
$\pi = (s_0s_3s_4)^\omega$ (as described by $(abb)^\omega$ above).
$\text{trace}(\pi) = (p \neg p \overline{p})^\omega$ as can be seen in Figure 2.

Alternatively, the following answer is also valid:
Yes: $\pi = ab(b^\omega)$
$\text{Trace}(\pi) = (p)(p)(\overline{p}^\omega)$