Syntax of Propositional Logic

Assaf Kfoury

January 19, 2016
Syntax of the WWF’s of Propositional Logic

▶ Reading: [LCS, Section 1.3]
Syntax of the WWF’s of Propositional Logic

- Reading: [LCS, Section 1.3]
- The WWF’s of propositional logic are obtained by applying the construction rules below, and only these finitely many times:

 1. every propositional atom (i.e., propositional variable) \(p \) is a WFF
Syntax of the WWF’s of Propositional Logic

► Reading: [LCS, Section 1.3]

► The WWF’s of propositional logic are obtained by applying the construction rules below, and only these finitely many times:

1. every propositional atom (i.e., propositional variable) p is a WFF

2. if φ is a WFF, then so is $(\neg \varphi)$
Syntax of the WWF’s of Propositional Logic

- Reading: [LCS, Section 1.3]
- The WWF’s of propositional logic are obtained by applying the construction rules below, and only these finitely many times:

 1. every propositional atom (i.e., propositional variable) p is a WFF

 2. if φ is a WFF, then so is $(\neg \varphi)$

 3. if φ and ψ are WFF’s. then so is $(\varphi \land \psi)$
Syntax of the WWF’s of Propositional Logic

- Reading: [LCS, Section 1.3]
- The WWF’s of propositional logic are obtained by applying the construction rules below, and only these finitely many times:

1. every propositional atom (i.e., propositional variable) \(p \) is a WFF

2. if \(\varphi \) is a WFF, then so is \(\neg \varphi \)

3. if \(\varphi \) and \(\psi \) are WFF’s, then so is \(\varphi \land \psi \)

4. if \(\varphi \) and \(\psi \) are WFF’s, then so is \(\varphi \lor \psi \)
Syntax of the WWF’s of Propositional Logic

▶ Reading: [LCS, Section 1.3]

▶ The WWF’s of propositional logic are obtained by applying the construction rules below, and only these finitely many times:

1. every propositional atom (i.e., propositional variable) p is a WFF

2. if φ is a WFF, then so is $(\neg \varphi)$

3. if φ and ψ are WFF’s. then so is $(\varphi \land \psi)$

4. if φ and ψ are WFF’s. then so is $(\varphi \lor \psi)$

5. if φ and ψ are WFF’s. then so is $(\varphi \rightarrow \psi)$
Syntax of the WWF’s of Propositional Logic

More succintly, in BNF (Backus Naur Form):

\[\phi ::= p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \rightarrow \phi) \]

This is the same as in [LCS, page 33].
Syntax of the WWF’s of Propositional Logic

- More succinctly, in **BNF (Backus Naur Form)**:

\[\varphi ::= p \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \rightarrow \varphi) \]

This is the same as in [LCS, page 33].

- Or, in **Extended BNF**:

\[\varphi ::= p \mid (\neg \varphi) \mid (\varphi \land \psi) \mid (\varphi \lor \psi) \mid (\varphi \rightarrow \psi) \]
Syntax of the WWF’s of Propositional Logic

- More succinctly, in **BNF (Backus Naur Form)**:

\[\phi ::= p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \]

This is the same as in [LCS, page 33].

- Or, in **Extended BNF**:

\[\phi ::= p \mid (\neg \phi) \mid (\phi \land \psi) \mid (\phi \lor \psi) \mid (\phi \to \psi) \]

- Or, more abstractly by omitting parentheses, in **Extended BNF**:

\[\phi ::= p \mid \neg \phi \mid \phi \land \psi \mid \phi \lor \psi \mid \phi \to \psi \]

Parentheses are used only to set an order of precedence among logical connectives \{\neg, \land, \lor, \to\}.
Parse Trees of WFF’s

- A fully-parenthesized WFF:

\[
\left(\neg((\neg P) \lor (Q \land (\neg P))) \right)
\rightarrow \left(\neg((\neg P) \rightarrow (Q \lor (\neg R))) \right)
\]
Parse Trees of WFF’s

- A fully-parenthesized WFF:

\[
\left(\left(\neg \left(\left(\neg P \right) \lor \left(Q \land \neg P \right) \right) \right) \right)
\rightarrow \left(\neg \left(\left(\neg P \right) \rightarrow \left(Q \lor \neg R \right) \right) \right)
\]

- Same WFF with all parentheses omitted:

\[
\neg \neg P \lor Q \land \neg P
\rightarrow \neg \neg P \rightarrow Q \lor \neg R
\]

(an incomprehensible mess!)
Parse Trees of WFF’s

- A fully-parenthesized WFF:

\[
\left(\neg \left(\neg P \lor (Q \land \neg P) \right) \right) \\
\rightarrow \left(\neg \left(\neg P \rightarrow (Q \lor \neg R) \right) \right)
\]

- Same WFF with all parentheses omitted:

\[
\neg \neg P \lor Q \land \neg P \\
\rightarrow \neg \neg P \rightarrow Q \lor \neg R
\]

(an incomprehensible mess!)

- Same WFF minimally parenthesized:

\[
\neg \left(\neg P \lor (Q \land \neg P) \right) \\
\rightarrow \left(\neg P \rightarrow (Q \lor \neg R) \right)
\]
Parse Trees of WFF’s

▷ A fully-parenthesized WFF:

\[
\left(\neg \left(\neg ((\neg P) \lor (Q \land (\neg P))) \right) \rightarrow \neg \left(\neg ((\neg P) \rightarrow (Q \lor (\neg R))) \right) \right)
\]

▷ Same WFF with all parentheses omitted:

\[
\neg \neg P \lor Q \land \neg P \rightarrow \neg \neg P \rightarrow Q \lor \neg R
\]

(an incomprehensible mess!)

▷ Same WFF minimally parenthesized:

\[
\neg (\neg P \lor (Q \land \neg P)) \rightarrow (\neg P \rightarrow (Q \lor \neg R))
\]