Let \(\varphi \triangleq \exists y \left[P(y) \rightarrow \forall x P(x) \right] \)

\(\varphi \) is a first-order sentence over the vocabulary \(\Sigma = \{P\} \).

Is \(\varphi \) semantically valid (true in every model) or, equivalently, formally provable?

Yes, it is, no matter the interpretation of the predicate symbol \(P \).

So why not consider instead the formula \(\psi \triangleq \forall P \varphi \)?

\(\psi \) is no longer first-order
from first-order to second-order logic

Given a vocabulary $\Sigma = \mathcal{P} \cup \mathcal{F} \cup \mathcal{C}$ as before –

\mathcal{P} is a collection of predicate symbols,
\mathcal{F} a collection of function symbols,
\mathcal{C} a collection of constant symbols –

we go from the syntax and formation rules of first-order logic to second-order logic by adding:

- **predicate variables**: X_1, X_2, \ldots each with a fixed arity $n \geq 1$.
- **function variables**: F_1, F_2, \ldots each with a fixed arity $n \geq 1$.

The definition of a model \mathcal{M} proceeds as in Handout 10, except that now an environment (or look-up table) ℓ must assign a meaning to **predicate variables** and **function variables**, in addition to **individual variables**.
from first-order to second-order logic (continued)

The only new features in the definition of satisfaction deal with the second-order quantifiers – see Handout 10:

- let X be a n-ary predicate variable, for some $n \geq 1$,

$$\mathcal{M}, \ell \models \forall X \varphi \iff \mathcal{M}, \ell[X \mapsto R] \models \varphi \text{ for every } R \subseteq A \times \cdots \times A$$

- let F be a n-ary function variable, for some $n \geq 1$,

$$\mathcal{M}, \ell \models \forall F \varphi \iff \mathcal{M}, \ell[F \mapsto f] \models \varphi \text{ for every } f : A \times \cdots \times A \to A$$
Let φ be a second-order WFF. Similar to 1st order logic, we say:

- **WFF φ is **satisfiable** iff**
 there is some M and some ℓ such that $M, \ell \models \varphi$

- **WFF φ is **semantically valid** iff**
 for every M and every ℓ it is the case that $M, \ell \models \varphi$

Let Γ be a set of second-order WFF’s:

- **Γ is **satisfiable** iff**
 there is some M and some ℓ such that $M, \ell \models \varphi$ for every $\varphi \in \Gamma$

- **semantic entailment**: $\Gamma \models \psi$ iff for every M and every ℓ, it holds that $M, \ell \models \Gamma$ implies $M, \ell \models \psi$
soundness and completeness for second-order logic

- There are several deductive systems for second-order logic, but none can be complete w.r.t. second-order semantics.

- At a minimum, each of these deductive systems is sound, i.e., any second-order WFF which is formally derivable is semantically valid.
“A well-ordering is an ordering \leq such that every non-empty set has a least element w.r.t. \leq":

$$\varphi \triangleq \forall X \left[\exists y X(y) \to \exists v \ (X(v) \land \forall w (X(w) \to v \leq w)) \right]$$

Fact (not proved here): The set of sentences

$$\{ \varphi \} \cup \text{Th}(\mathcal{N}_1)$$

defines \mathcal{N}_1 (and every structure which is an expansion of \mathcal{N}_1) **up to isomorphism**, where $\mathcal{N}_1 \triangleq (\mathbb{N}, 0, S, <)$ in Handout 14.
A second-order sentence satisfied by a model M iff the domain of M is **infinite**:

$$\psi \triangleq \exists F \left[\forall x \forall y \left(F(x) = F(y) \rightarrow x = y \right) \land \exists z \forall x \neg \left(F(x) = z \right) \right]$$

A second-order sentence satisfied by a model M iff the domain of M is **finite**:

$$\neg \psi$$
Compactness Theorem for First-Order (Handout 12). Let Γ be a set of first-order sentences.

1. If every finite subset of Γ is **satisfiable**, then so is Γ.
2. If every finite subset of Γ is **consistent**, then so is Γ.

Counter-Example for Second-Order Compactness
For every $n \geq 1$, define the first-order sentence θ_n by:

$$\theta_n \triangleq \text{“there are at least } n \text{ distinct elements”}$$

Consider the set of sentences:

$$\Delta = \{\neg \psi\} \cup \{\theta_1, \theta_2, \theta_3, \ldots\}$$

Every finite subset of Δ is **satisfiable**, while Δ is **unsatisfiable**.