Model Checking:
Branching-Time Temporal Logic (CTL and CTL*)

Assaf Kfoury

March 21, 2016
syntax of computation tree logic (CTL)

\[\phi ::= \top | \perp | p | \neg \phi | \phi \land \phi | \phi \lor \phi | \phi \rightarrow \phi \]

- propositional logic
- “next” state
- some “future” state
- all “future” states
- “until”
- “weak until”
- “release”
satisfaction of a WFF of CTL is defined relative to
a transition system $M \triangleq (S, \rightarrow, L)$ and a state $s \in S$

1. $M, s \models \top$
2. $M, s \not\models \bot$
3. $M, s \models p$ iff $p \in L(s)$
4. $M, s \models \neg \varphi$ iff $M, s \not\models \varphi$
5. $M, s \models \varphi \land \psi$ iff $M, s \models \varphi$ and $M, s \models \psi$
6. $M, s \models \varphi \lor \psi$ iff $M, s \models \varphi$ or $M, s \models \psi$
7. $M, s \models \varphi \rightarrow \psi$ iff $M, s \models \psi$ whenever $M, s \models \varphi$
semantics of CTL – [LCS, Section 3.4.2, pp 211-214]

8. \(M, s \models \text{AX} \varphi \) iff for every \(s' \) such that \(s \rightarrow s' \)
 we have \(M, s' \models \varphi \)

9. \(M, s \models \text{EX} \varphi \) iff there is \(s' \) such that \(s \rightarrow s' \)
 and \(M, s' \models \varphi \)

10. \(M, s \models \text{AG} \varphi \) iff for every path \(\pi \triangleq s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \cdots \) with \(s = s_1 \),
 and for every \(s_i \) along \(\pi \), we have \(M, s_i \models \varphi \)

11. \(M, s \models \text{EG} \varphi \) iff there is a path \(\pi \triangleq s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \cdots \) with \(s = s_1 \)
 such that for every \(s_i \) along \(\pi \), we have \(M, s_i \models \varphi \)

12. \(M, s \models \text{AF} \varphi \) iff for every path \(\pi \triangleq s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \cdots \) with \(s = s_1 \),
 there is \(s_i \) along \(\pi \) such that \(M, s_i \models \varphi \)

13. \(M, s \models \text{EF} \varphi \) iff there is a path \(\pi \triangleq s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \cdots \) with \(s = s_1 \)
 and there is \(s_i \) along \(\pi \) such that \(M, s_i \models \varphi \)
14. \(M, s \models A[\varphi U \psi] \) iff for every path \(\pi \equiv s_1 \to s_2 \to s_3 \to \cdots \) with \(s = s_1 \) we have \(\pi \models \varphi U \psi \)
14. $\mathcal{M}, s \models A[\varphi U \psi]$ iff for every path $\pi \triangleq s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \cdots$
 with $s = s_1$ we have $\pi \models \varphi U \psi$

what is disturbing about the preceding definition??
see [LCS, Section 3.4.2, p 212, point 13]
semantics of CTL – [LCS, Section 3.4.2, pp 211-214]

14. \(M, s \models A[\varphi \mathbf{U} \psi] \) iff for every path \(\pi \equiv s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \cdots \) with \(s = s_1 \) we have \(\pi \models \varphi \mathbf{U} \psi \)

what is disturbing about the preceding definition??
see [LCS, Section 3.4.2, p 212, point 13]

15. \(M, s \models E[\varphi \mathbf{U} \psi] \) iff there is a path \(\pi \equiv s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \cdots \) with \(s = s_1 \) such that \(\pi \models \varphi \mathbf{U} \psi \)
14. $\mathcal{M}, s \models A[\varphi U \psi]$ iff for every path $\pi \triangleq s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \cdots$ with $s = s_1$ we have $\pi \models \varphi U \psi$

what is disturbing about the preceding definition??
see [LCS, Section 3.4.2, p 212, point 13]

15. $\mathcal{M}, s \models E[\varphi U \psi]$ iff there is a path $\pi \triangleq s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \cdots$ with $s = s_1$ such that $\pi \models \varphi U \psi$

again, what is disturbing about the preceding definition??
see [LCS, Section 3.4.2, p 212, point 14]
finally P

globally P

next P

P until q

AF_P

AG_P

AX_P

$A[p \cup q]$

EF_P

EG_P

EX_P

$E[p \cup q]$
useful intuitive English qualifiers

- “potentially φ” = $\text{EF}\varphi$

- “inevitably φ” = $\text{AF}\varphi$

- “potentially always φ” = $\text{EG}\varphi$

- “invariantly φ” = $\text{AG}\varphi$
syntax of CTL* – [LCS, Section 3.5, pp 217 and on]

▶ state formulas

ϕ ::= ⊤ | p | ¬ ϕ | (ϕ ∧ ϕ) | A[α] | E[α]

▶ path formulas

α ::= ϕ | ¬ α | (α ∧ α) | Xα | Fα | Gα | (α U α)

▶ LTL is a "subset" of CTL*

because a LTL formula α is equivalent to the CTL* formula A[α] (this requires a rigorous proof, omitted in the book, based on the formal semantics of CTL*, in the following slides)

▶ CTL is a subset of CTL*

because we can restrict paths formulas to be of the form

α ::= Xϕ | Fϕ | Gϕ | (ϕ U ϕ)

(check that this restriction on α corresponds to enforcing the requirement that every temporal connective must be coupled with a quantifier)
syntax of CTL* – [LCS, Section 3.5, pp 217 and on]

▶ state formulas

\[\varphi ::= \top \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid A[\alpha] \mid E[\alpha] \]
syntax of CTL* – [LCS, Section 3.5, pp 217 and on]

▶ state formulas

\[\varphi ::= T \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid A[\alpha] \mid E[\alpha] \]

▶ path formulas

\[\alpha ::= \varphi \mid \neg \alpha \mid (\alpha \land \alpha) \mid X\alpha \mid F\alpha \mid G\alpha \mid (\alpha U \alpha) \]
syntax of CTL* – [LCS, Section 3.5, pp 217 and on]

▶ state formulas
\[
\varphi ::= \top \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid A[\alpha] \mid E[\alpha]
\]

▶ path formulas
\[
\alpha ::= \varphi \mid \neg \alpha \mid (\alpha \land \alpha) \mid X\alpha \mid F\alpha \mid G\alpha \mid (\alpha U \alpha)
\]

▶ LTL is a “subset” of CTL*

because a LTL formula \(\alpha \) is equivalent to the CTL* formula \(A[\alpha] \)

(this requires a rigorous proof, omitted in the book, based on the formal semantics of CTL*, in the following slides)
syntax of CTL* – [LCS, Section 3.5, pp 217 and on]

- **state formulas**

 \[\varphi ::= \top \mid p \mid \neg \varphi \mid (\varphi \land \varphi) \mid A[\alpha] \mid E[\alpha] \]

- **path formulas**

 \[\alpha ::= \varphi \mid \neg \alpha \mid (\alpha \land \alpha) \mid X\alpha \mid F\alpha \mid G\alpha \mid (\alpha U \alpha) \]

- LTL is a “subset” of CTL*

 because a LTL formula \(\alpha \) is equivalent to the CTL* formula \(A[\alpha] \)

 (this requires a rigorous proof, omitted in the book, based on the formal semantics of CTL*, in the following slides)

- CTL is a subset of CTL*

 because we can restrict paths formulas to be of the form

 \[\alpha ::= X\varphi \mid F\varphi \mid G\varphi \mid (\varphi U \varphi) \]

 (check that this restriction on \(\alpha \) corresponds to enforcing the requirement that every **temporal connective** must be coupled with a **quantifier**

Assaf Kfoury, CS 512, Spring 2016, Handout 21
semantics of CTL* – not in [LCS]

- satisfaction of a **state formula** of CTL* is defined relative to a transition system $\mathcal{M} \triangleq (S, \rightarrow, L)$ and a state $s \in S$

1. $\mathcal{M}, s \models \top$
2. $\mathcal{M}, s \not\models \bot$
3. $\mathcal{M}, s \models p$ iff $p \in L(s)$
4. $\mathcal{M}, s \models \neg \varphi$ iff $\mathcal{M}, s \not\models \varphi$
5. $\mathcal{M}, s \models \varphi_1 \land \varphi_2$ iff $\mathcal{M}, s \models \varphi_1$ and $\mathcal{M}, s \models \varphi_2$
6. $\mathcal{M}, s \models A\alpha$ iff $\mathcal{M}, \pi \models \alpha$ for every path π starting at s
7. $\mathcal{M}, s \models E\alpha$ iff $\mathcal{M}, \pi \models \alpha$ for some path π starting at s
semantics of CTL* – not in [LCS]

- satisfaction of a **path formula** of CTL* is defined relative to a transition system $\mathcal{M} \triangleq (S, \rightarrow, L)$ and a path $\pi \triangleq s_1 \rightarrow s_2 \rightarrow \cdots$

1. $\mathcal{M}, \pi \models \varphi$ iff $\mathcal{M}, s_1 \models \varphi$
2. $\mathcal{M}, \pi \models \neg \alpha$ iff $\mathcal{M}, \pi \not\models \alpha$
3. $\mathcal{M}, \pi \models \alpha_1 \land \alpha_2$ iff $\mathcal{M}, \pi \models \alpha_1$ and $\mathcal{M}, \pi \models \alpha_2$
4. $\mathcal{M}, \pi \models X \alpha$ iff $\mathcal{M}, \pi^2 \models \alpha$
5. $\mathcal{M}, \pi \models F \alpha$ iff there is $n \geq 1$ such that $\mathcal{M}, \pi^n \models \alpha$
6. $\mathcal{M}, \pi \models G \alpha$ iff for every $n \geq 1$ it holds that $\mathcal{M}, \pi^n \models \alpha$
7. $\mathcal{M}, \pi \models \alpha_1 U \alpha_2$ iff there is $n \geq 1$ such that $\mathcal{M}, \pi^n \models \alpha_2$
 for every $1 \leq k < n$ it holds that $\mathcal{M}, \pi^k \models \alpha_1$
comparing LTL, CTL, and CTL*

- \(\varphi_{1,\text{LTL}} \equiv G \neg p \) and \(\varphi_{1,\text{CTL}} \equiv A G \neg p \)
express the same property “\(p \) never holds”

- \(\varphi_{2,\text{LTL}} \equiv G (p \rightarrow F q) \) and \(\varphi_{2,\text{CTL}} \equiv A G (p \rightarrow A F q) \)
express the same property “whenever \(p \) happens, \(q \) eventually happens”
useful fact to prove non-equivalences between LTL and CTL.

FACT: Let M and M' be models of of LTL (same as models of CTL) such that $\text{Paths}(M') \subseteq \text{Paths}(M)$ – or $\text{Traces}(M') \subseteq \text{Traces}(M)$ – and let φ be a WFF of LTL.

If $M \models \varphi$ then $M' \models \varphi$.

The preceding fact does not hold if φ is a WFF of CTL.

Exercise: Write a WFF of CTL which is a counter-example showing that the preceding fact fails for CTL.
useful fact to prove non-equivalences between LTL and CTL.

FACT: Let M and M' be models of LTL (same as models of CTL) such that $\text{Paths}(M') \subseteq \text{Paths}(M)$ – or $\text{Traces}(M') \subseteq \text{Traces}(M)$ – and let φ be a WFF of LTL.

If $M \models \varphi$ then $M' \models \varphi$.

The preceding fact does not hold if φ is a WFF of CTL.

Exercise: Write a WFF of CTL which is a counter-example showing that the preceding fact fails for CTL.

$\varphi_{3,\text{LTL}} \triangleq F X p$ is not equivalent to $\varphi_{3,\text{CTL}} \triangleq A F A X p$

$\varphi_{3,\text{CTL}}$ can distinguish between two transition systems which $\varphi_{3,\text{LTL}}$ cannot.
useful fact to prove non-equivalences between LTL and CTL.

FACT: Let M and M' be models of LTL (same as models of CTL) such that $\text{Paths}(M') \subseteq \text{Paths}(M)$ – or $\text{Traces}(M') \subseteq \text{Traces}(M)$ – and let φ be a WFF of LTL.

If $M \models \varphi$ then $M' \models \varphi$.

The preceding fact does not hold if φ is a WFF of CTL.

Exercise: Write a WFF of CTL which is a counter-example showing that the preceding fact fails for CTL.

\[\varphi_{3,LTL} \triangleq F X p \quad \text{is not equivalent to} \quad \varphi_{3,CTL} \triangleq A F A X p \]

$\varphi_{3,CTL}$ can distinguish between two transition systems which $\varphi_{3,LTL}$ cannot

stronger fact: $\varphi_{3,CTL}$ can distinguish between two transition systems which no LTL formula can

\[\varphi_{4,LTL} \triangleq F G p \quad \text{is not equivalent to} \quad \varphi_{4,CTL} \triangleq A F A G p \]

$\varphi_{4,LTL}$ holds in a transition system where $\varphi_{4,CTL}$ does not

stronger fact: $\varphi_{4,LTL}$ expresses a property which no CTL formula can
▶ $\varphi_{5,\text{LTL}} \triangleq Xp$ is not equivalent to $\varphi_{5,\text{CTL}} \triangleq EXp$

Question: Why is $\psi \triangleq \mathcal{E} Xp \wedge \mathcal{A} F Gp$ not a WFF in the syntax of CTL?
comparing LTL, CTL, and CTL* (continued)

- $\varphi_{5,\text{LTL}} \triangleq Xp$ is not equivalent to $\varphi_{5,\text{CTL}} \triangleq E Xp$

- No LTL formula and no CTL formula is equivalent to the CTL* formula $\psi \triangleq E X p \land A F G p$

Question: Why is ψ not a WFF in the syntax of CTL?