Logistics

- Assignment each week starting with Assignment 2
- The proposal for a final project is due in approximately a month
 - New project ideas were added on the class website
 - For Network Security and System Security type projects see the projects under Dr. Rick Skowrya
 - For simpler topics see the Mark Reynolds topics
 - The Andrei Lapets topics discuss SMT solvers.

Handout 07

- SAT Solvers are an efficient way of deciding if a WFF is satisfiable
- SMT stands for Satisfiability Modulo Theory
- What is theory?
 - Formal first order theory which is propositional logic extended
- SMT solver = SAT solver + ? (? = fragments of first order)
- First Order Logic
 - In any formal logic you have formal syntax, formal proof theory, and formal semantics.
 - At a minimum formal proof theory and formal semantics must hold the condition of soundness
 - In First order logic it’s beyond hope to have completeness as well.
 - Propositional logic is a subset of First Order Logic
- Predicate Logic aka First Order
 - for all x, if x is a bird then x has wings $\forall x(B(x) \rightarrow W(x))$
 - for all x, if x has wings then x can fly $\forall x(W(x) \rightarrow F(x))$
 - Coco is a bird $B(c)$
 - Coco has wings $W(c)$
 - Coco’s mother can fly $F(m(c))$
 - it is not the case that for all x $\neg(\forall x(B(x) \rightarrow W(x)))$
 - There exists an x such $\exists x(B(x) \rightarrow W(x))$
• As you can see with the above examples, predicate logic is a way of formally encoding English logic.

• It is comprised of quantifiers such as \(\forall, \exists \).

• The variable \(c \) is a constant.

• And \(\neg \) is an assertion.

• Vocabulary

 - The vocabulary of predicate logic consists of:
 - Set \(P \) of predicate symbols, each of arity \(n \geq 0 \)
 - Set \(F \) of function symbols each of arity \(n \geq 1 \)
 - Set \(C \) of constant symbols arity = 0
 - Arity is the number of operands that a function takes.

• Terms

 - A variable \(x \) is a term.
 - A constant \(c \in C \) is a term.
 - if \(t_1, \ldots, t_n \) are terms and \(f \in F \) is a \(n \)-ary \(f(t_1, \ldots, t_n) \) is a term.
 - In BNF notation the above translates to:
 - \(t ::=} x | c | f(t_1, \ldots, t_n) \)

• Well Formed Formulas aka WFF’s

 - if \(t_1, \ldots, t_n \) are terms and \(p \in t \) has arity \(n = 0 \) then \(P(t_1, \ldots, t_n) \) is a WFF (an atomic WFF)
 - if \(\varphi \) is a WFF then so is \(\neg \varphi \)
 - if \(\varphi \) and \(\psi \) are both WFF’s then so are \((\varphi \lor \psi) \), \((\varphi \land \psi) \), and \((\varphi \rightarrow \psi) \).
 - if \(\varphi \) is a WFF and \(x \) is a variable then so are \((\forall x \varphi) \) and \((\exists x \varphi) \)
 - In BNF that looks like:
 - \(\varphi ::=} P(t_1, \ldots, t_n) | \neg \varphi | (\varphi \lor \varphi) | (\varphi \land \varphi) | (\forall x \varphi) | (\exists x \varphi) \)

• To turn Propositional logic into First Order, change all atoms into zero-ary predicates.

• Free and Bound variables

 - a variable \(x \) may occur free or bound in a WFF \(\varphi \)
 - if \(x \) is bound in \(\varphi \) then there are \(\geq 0 \) bound occurrences of \(x \) and \(\geq 1 \) binding occurrences of \(x \) in \(P \).
 - a binding occurrence of \(x \) is of form \(\forall x \) or \(\exists x \)
 - if a binding occurrence of \(x \) occurs as \((Qx \varphi) \) where \(Q \in \{\forall, \exists\} \) then \(\varphi \) is the scope of the binding occurrence.
 - The scope of two binding occurrences may be disjoint, nested but cannot overlap.
 - Assumption every variable \(x \) has \(\leq 1 \) binding occurrence in any WFF
 - See page 6 of HD 07 for an example.
- φ is closed iff $FV(\varphi) = \emptyset$
- You can rename the same variable x in different scopes. (See HD 07 for examples).

- **Equivalence Relations**
 - $\forall x \ x \sim x$ reflexivity
 - $\forall x \forall y \ x \sim y \rightarrow y \sim x$ symmetry
 - $\forall x \forall y \forall z \ (x \sim y \land y \sim z \rightarrow x \sim z)$ transitivity