1 Modeling Concurrent Processes with LTL

- Regarding Problem 1 of problem set 7 (posted Friday):
 - Two processes \(P \) and \(Q \) running concurrently with a shared variable \(n \) storing some integer \(i \in \{-2, -1, 0, 1, 2\} \). As for the code itself, I didn’t write it down, but the basic idea is that \(n \) is initialized to 0, process \(Q \) decrements \(n \) while \(P \) increments \(n \) (each by 1), and once \(n = -2 \), process \(Q \) terminates and \(n \) is re-initialized to 0.

- To model this system, think of a model \(M \) with 8 states:
 - \(S[P, Q, i] \), with \(i \in \{-2, -1, 0, 1, 2\} \), representing when both \(P \) and \(Q \) are running.
 - \(S[P, i] \) with \(i \in \{0, 1, 2\} \) when only \(P \) is running.

- Such a model can be represented in terms of the following directed graph:
2 Regular Expressions and Regular Language

- Consider a directed graph with nodes representing states of some system, with each edge labeled either \(a \) or \(b \). Thus, any path in the system will be represented by a series of \(a \)'s and \(b \)'s, and will look something like \(aabababa \cdots \).

- The expression \(L(A) \) is used to denote a particular execution path through the system to one of its final states. More formally, \(L(A) = "The language recognized by the automaton \(A \)."

 - "+" means 'or', so \((a + b) \) means that either path \(a \) or path \(b \) can be taken.
 - An expression like \(a^* \) means that the path \(a \) can be taken an arbitrary number of times, like when a node has an edge which leads immediately to itself.
 - So, an expression like \((a+b)^*b(a+b) \) means "either path \(a \) or \(b \) is taken (possibly both, alternating) an arbitrary number of times, followed by path \(bb \), followed by either path \(a \) or path \(b \)."

3 \(\omega \)-Regular Expressions and \(\omega \)-Regular Language

- Extends finite automata for infinite paths.

 - One type of \(\omega \)-automata is called a "Buchi Automaton". It accepts an infinite input sequence if there exists a run of the automaton which visits at least one of the final states infinitely often.
 - Relevant for deciding validity for models in LTL.