1 The Pigeon Hole Principle

For every natural number \(n \geq 2 \), the Pigeon Hole Principle (PHP) states: “If \(n \) pigeons sit in \((n - 1)\) holes, then some hole contains more than one pigeon.” We want to formalize PHP in propositional logic (PL). There are different ways of doing this, but perhaps the most natural is:

- Use propositional atom \(P_{i,j} \) to indicate that pigeon \(i \) is in hole \(j \), where \(1 \leq i \leq n \) and \(1 \leq j < n \).

With this formal representation of “pigeon \(i \) is in hole \(j \)” we can formalize PHP with the following PL formula \(\varphi \):

\[
\varphi \equiv \bigwedge_{1 \leq i \leq n} \left(\bigvee_{1 \leq j < n} P_{i,j} \right) \rightarrow \bigvee_{1 \leq i < k \leq n} \left(\bigvee_{1 \leq j < n} (P_{i,j} \land P_{k,j}) \right)
\]

where \(\bigwedge \) and \(\bigvee \) are shorthand notation to write long sequences of conjunctions and disjunctions, respectively. In particular, for the case \(n = 3 \), we get:

\[
\varphi = (P_{1,1} \lor P_{1,2}) \land (P_{2,1} \lor P_{2,2}) \land (P_{3,1} \lor P_{3,2}) \rightarrow \\
(P_{1,1} \land P_{2,1}) \lor (P_{1,2} \land P_{2,2}) \lor (P_{1,1} \land P_{3,1}) \lor (P_{1,2} \land P_{3,2}) \lor (P_{2,1} \land P_{3,1}) \lor (P_{2,2} \land P_{3,2})
\]

Exercise 1 Let \(f \) be a total function from \(\{1, \ldots, n\} \) to \(\{1, \ldots, n - 1\} \), and use the same propositional atoms \(P_{i,j} \) used in the formalization of PHP, to define PL formulas \(\varphi_1 \) and \(\varphi_2 \) such that:

1. \(\varphi_1 \) is satisfiable iff \(f \) is a total (possibly multivalued) function on \(\{1, \ldots, n\} \),
2. \(\varphi_2 \) is satisfiable iff \(f \) is not one-to-one.

Another way of formalizing PHP in PL is to define the formula \(\varphi' \equiv \varphi_1 \rightarrow \varphi_2 \).

Exercise 2 This is an implementation exercise. The WFF \(\varphi \) that formalizes PHP is not only satisfiable, but also valid (or a tautology), i.e., all valuations of the atoms \(P_{i,j} \) should satisfy \(\varphi \). Use Isabelle, or any automated proof-assistant of your choice, to establish that \(\varphi \) is valid. Do the implementation for at least two cases, \(n = 3 \) and \(n = 4 \). Do you notice any difference in the execution times? How would you handle the case \(n = 10 \)?