1 The Pigeon Hole Principle

For every natural number \(n \geq 2 \), the Pigeon Hole Principle (PHP) states: “If \(n \) pigeons sit in \((n-1) \) holes, then some hole contains more than one pigeon.” We want to formalize PHP in propositional logic (PL). There are different ways of doing this, but perhaps the most natural is:

- Use propositional atom \(P_{i,j} \) to indicate that pigeon \(i \) is in hole \(j \), where \(1 \leq i \leq n \) and \(1 \leq j < n \).

With this formal representation of “pigeon \(i \) is in hole \(j \)” we can formalize PHP with the following PL formula \(\phi \):

\[
\phi \equiv \bigwedge_{1 \leq i \leq n} \left(\bigvee_{1 \leq j < n} P_{i,j} \right) \rightarrow \bigvee_{1 \leq i < k \leq n} \left(\bigvee_{1 \leq j < n} (P_{i,j} \wedge P_{k,j}) \right)
\]

where \(\bigwedge \) and \(\bigvee \) are shorthand notation to write long sequences of conjunctions and disjunctions, respectively. In particular, for the case \(n = 3 \), we get:

\[
\phi = (P_{1,1} \vee P_{1,2}) \wedge (P_{2,1} \vee P_{2,2}) \wedge (P_{3,1} \vee P_{3,2}) \rightarrow \\
(P_{1,1} \wedge P_{2,1}) \vee (P_{1,2} \wedge P_{2,2}) \vee (P_{1,1} \wedge P_{3,1}) \vee (P_{1,2} \wedge P_{3,2}) \vee (P_{2,1} \wedge P_{3,1}) \vee (P_{2,2} \wedge P_{3,2})
\]

Exercise 1 Let \(f \) be a total function from \{1, \ldots, n\} to \{1, \ldots, n-1\}, and use the same propositional atoms \(P_{i,j} \) used in the formalization of PHP, to define PL formulas \(\varphi_1 \) and \(\varphi_2 \) such that:

1. \(\varphi_1 \) is satisfiable iff \(f \) is a total (possibly multivalued) function on \{1, \ldots, n\},
2. \(\varphi_2 \) is satisfiable iff \(f \) is not one-to-one.

Another way of formalizing PHP in PL is to define the formula \(\varphi' \equiv \varphi_1 \rightarrow \varphi_2 \).

Exercise 2 This is an implementation exercise. The WFF \(\varphi \) that formalizes PHP is not only satisfiable, but also valid (or a tautology), i.e., all valuations of the atoms \(P_{i,j} \) should satisfy \(\varphi \). Use Isabelle, or any automated proof-assistant of your choice, to establish that \(\varphi \) is valid. Do the implementation for at least two cases, \(n = 3 \) and \(n = 4 \). Do you notice any difference in the execution times? How would you handle the case \(n = 10 \)?

2 A Two-Player Game: Tic-Tac-Toe

There are different ways, in different formal logics, of modeling Tic-Tac-Toe. If we only want to model the starting configuration and the winning configuration in the game, then propositional logic (PL) will do.
To make the game a little more interesting, consider Tic-Tac-Toe on a $K \times K$ board where $K \geq 3$. The game for $K = 3$ is the usual version. The game for $K = 4$ is shown in Figure 1, with a possible configuration of the board after 6 moves.

The first thing we need to do is to choose the propositional atoms for our modeling. For convenience, we write $[K]$ to denote the set of indices $\{1, 2, \ldots, K\}$. Here is a plausible choice:

- Use two-indexed propositional atoms, $P_{i,j}$ and $Q_{i,j}$ with $i, j \in [K]$, to identify the squares where X and O are located on the board. Specifically,

 $P_{i,j} = \begin{cases}
 true & \text{if square } (i, j) \in [K] \times [K] \text{ contains } X, \\
 false & \text{if square } (i, j) \in [K] \times [K] \text{ does not contain } X,
 \end{cases}$

 $Q_{i,j} = \begin{cases}
 true & \text{if square } (i, j) \in [K] \times [K] \text{ contains } O, \\
 false & \text{if square } (i, j) \in [K] \times [K] \text{ does not contain } O.
 \end{cases}$

The starting configuration is the configuration when no X and no O are yet placed on the board, which can be modeled by:

$$\varphi_{\text{start}} := (\bigwedge_{i,j \in [K]} \neg P_{i,j}) \land (\bigwedge_{i,j \in [K]} \neg Q_{i,j})$$

It should be clear that φ_{start} is satisfied, i.e., made $true$, by the valuation that makes every $P_{i,j}$ and every $Q_{i,j}$ $false$.

We next model a winning configuration for X. But what is a winning configuration for X when $K \geq 4$? There are four possible ways in which the X-player can win:

- K occurrences of X are placed in the same row of the board,
- K occurrences of X are placed in the same column of the board,
- K occurrences of X are placed along the first diagonal of the board,
- K occurrences of X are placed along the second diagonal of the board.
Note that the indeces of the first diagonal are \(\{(1,1), (2,2), \ldots, (K,K)\} \), while those of the second diagonal are \(\{(1,K), (2,K-1), \ldots, (K,1)\} \). We can thus model a winning configuration for the \(X \)-player with the formula:

\[
\varphi_{X\text{-win}} := \left(\bigvee_{i \in [K]} \bigwedge_{j \in [K]} P_{i,j} \right) \lor \left(\bigvee_{j \in [K]} \bigwedge_{i \in [K]} P_{i,j} \right) \lor \left(\bigwedge_{i \in [K]} P_{i,i} \right) \lor \left(\bigwedge_{i \in [K]} P_{i,K+1-i} \right)
\]

Exercise 3 The \(O \)-player in Tic-Tac-Toe wins by preventing the \(X \)-player from reaching a winning configuration. Define a propositional WFF \(\varphi_{O\text{-win}} \) which formally models a winning configuration for the \(O \)-player.

Hint: A winning configuration for the \(O \)-player is not “symmetric” to a winning configuration for the \(X \)-player, _i.e._, the former cannot be obtained from the latter by replacing every \(P_{i,j} \) by \(Q_{i,j} \) in \(\varphi_{X\text{-win}} \).

Exercise 4 Generalize the notion of _winning configuration_ for the \(X \)-player (and similarly for the \(O \)-player) as follows:

- \(X \)-player wins iff \(K \) occurrences of \(X \) are placed in \(K \) contiguous squares on the board.

Call the resulting game Tic-Tac-Toe*.

Two squares of the board are _contiguous_ iff they have a side in common. For example, square \((2,3)\) and \((2,4)\) are contiguous. In this version of the game, \(K \) occurrences of \(X \) in the same row (or in the same column) is a winning configuration, just as it is in the usual Tic-Tac-Toe, but in contrast to the usual game, \(K \) occurrences of \(X \) along the first or the second diagonal is not a winning configuration.

Write a propositional WFF \(\psi_{X\text{-win}} \) which is satisfied iff \(\psi_{X\text{-win}} \) represents a winning configuration for the \(X \)-player in Tic-Tac-Toe*.