Four Projects Proposed by Mark Reynolds

1. Factorization (Isabelle)

Use Isabelle to prove or refute the statement:
\[\gcd(N, M) \times \text{lcm}(N, M) = N \times M \]
for all positive integers \(N \) and \(M \). If the statement is false, produce a counterexample.

2. Fibonacci Numbers (Isabelle)

Let \(F_n \) denote the Fibonacci numbers. Use Isabelle to prove the following statements:
\[\gcd(F_{n+1}, F_n) = 1 \quad \text{and} \quad \gcd(F_{n+2}, F_n) = 1 \]

3. Fibonacci Numbers (Alloy)

Using a scope of at least 8, prove the two statements of Project 2 above in Alloy. Then find an Alloy counterexample to the statement:
\[\gcd(F_{n+3}, F_n) = 1 \]

4. A Paradox of Set Theory (Alloy)

Consider a system where there are 31 branch libraries, 31 branch librarians, and one head librarian. At the end of each year, the branch librarians compile a catalog of all books at their library. They send these catalogs to the head librarian. This year, the head librarian has discovered an inconsistency: some catalogs list themselves, while others do not. The head librarian sorts the catalogs into two piles. Pile G contains the catalogs that list themselves, while pile B contains the catalogs that do not list themselves. Create an Alloy model of this system.

The head librarian files all the catalogs in pile G, and then decides to create a new catalog \(U \) that lists all the catalogs that do not list themselves. First, show that the assertion "\(U \) lists itself" is inconsistent with your Alloy model of the catalog system. Second, show that the assertion "\(U \) does not list itself" is also inconsistent with your Alloy model. Finally, make a simple change to your model that makes it consistent with the second assertion.