Satisfiability Modulo Difference Logic

Combinatorial Problem Solving (CPS)

Albert Oliveras Enric Rodríguez-Carbonell

May 25, 2016

Basic Definitions

Given a directed graph G = (V, E) with weight function $w : E \to \mathbb{R}$, the weight w(p) of a path $p = (v_0, \dots, v_k)$ is

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

The distance $\delta(u, v)$ from u to v is

$$\delta(u,v) = \left\{ \begin{array}{ll} \min\{w(p): u \stackrel{p}{\rightsquigarrow} v\} & \text{if there is a path from } u \text{ to } v \\ \infty & \text{otherwise} \end{array} \right.$$

A shortest path from u to v is any path p such that $u \stackrel{p}{\rightsquigarrow} v$ and $w(p) = \delta(u, v)$

Difference Constraints

A difference constraint

is a linear constraint of the form $x - y \bowtie k$, where:

- $\bullet \quad \bowtie \in \{\leq, \geq, <, >, =, \neq\}$
- \bullet x and y are integer/real variables
- $k \in \mathbb{Z} ext{ or } \mathbb{R}$
- Equivalent forms: $x \bowtie y + k$, $x + k \bowtie y$
 - Ex. Let s_a , s_b be the starting times of two tasks a and b.

• $s_a + T \leq s_b$: task *b* cannot start earlier than *T* minutes after task *a* (they use same resources, etc.)

 $\bullet \quad s_a \le s_b + T:$

task a cannot start later than T minutes after task b (the product of b to be used by a expires, etc.)

Difference Logic

- Lits in Difference Logic (DL) are difference constraints
- Some transformations are performed at parsing time
- If domain is \mathbb{Z} replace x y < k by $x y \leq k 1$
- If domain is $\mathbb R$ replace x-y < k by $x-y \leq k-\delta$
 - δ is a sufficiently small real
 - δ is not computed but used symbolically (like in De Moura's & Dutertre's approach for LRA)

Difference Logic

- Note any solution to a set of DL literals can be shifted (i.e. if σ is a solution then so is $\sigma'(x) = \sigma(x) + k$)
- I This allows one to handle bounds $x \leq k$
 - Introduce fresh variable zero
 - Convert all bounds $x \leq k$ into $x zero \leq k$
 - Given a solution σ , shift it so that $\sigma(zero) = 0$

Difference Logic

- $x y = k \text{ is replaced by } x y \leq k \land x y \geq k$
 - $x y \neq k$ is replaced by $x y < k \lor x y > k$
 - If we allowed (dis)equalities as literals, then:
 - If domain is \mathbb{R} , then consistency check is polynomial
 - If domain is \mathbb{Z} , then consistency check is NP-hard (*k*-colorability)
 - $1 \leq c_i \leq k$ with $i = 1 \dots |V|$ encodes colors for vertexs
 - $c_i \neq c_j$ if $(i, j) \in E$ encodes colorability constraint
 - Hence we can assume all literals are $x y \leq k$

Constraint Graph

Given n variables x_1 , x_2 , ..., x_n and a system S of m difference constraints $x_i - x_j \le k_{ij}$ we can construct the constraint graph G = (V, E) where:

• $V = \{x_0, x_1, ..., x_n\}$

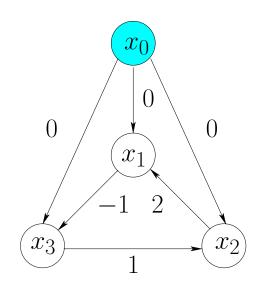
(each vertex corresponds to a var plus extra vertex x_0)

- E = {(x_j, x_i) | x_i − x_j ≤ k_{ij} ∈ S} ∪ {(x₀, x_i) | 1 ≤ i ≤ n} (each edge corresponds to a constraint, plus extra edges from x₀ to variables)
 Moreover, w(x_i, x_i) = k_{ij} and w(x₀, x_i) = 0
- G has n + 1 vertices and n + m edges
- Note that $\delta(x_0, x_i) < \infty$ for any x_i
- But $\delta(x_0, x_i)$ may not be well-defined if x_i belongs to a negative cycle

Constraint Graph

$$x_1 - x_2 \le 2$$

 $x_2 - x_3 \le 1$
 $x_3 - x_1 \le -1$



Systems of Difference Constraints

Theorem. Given S a system of difference constraints, let G = (V, E) be the corresponding constraint graph.

- 1. If G contains a negative cycle, then S is infeasible.
- 2. Otherwise $x_i \to \delta(x_0, x_i)$ is a solution to S.

Proof.

Let us prove 1.

Let $c = (v_0, ..., v_k)$ be a negative cycle, which corresponds to constraints $x(v_i) - x(v_{i-1}) \le w(v_{i-1}, v_i), (1 \le i \le k)$ in S.

(note x_0 cannot be in the cycle, as it has no entering edges)

By adding all these constraints we get the constraint $0 \leq \sum_{i=1}^{k} w(v_{i-1}, v_i)$, which is trivially false as RHS is < 0.

Systems of Difference Constraints

Theorem. Given S a system of difference constraints, let G = (V, E) be the corresponding constraint graph.

- 1. If G contains a negative cycle, then S is infeasible.
- 2. Otherwise $x_i \to \delta(x_0, x_i)$ is a solution to S.

Proof.

Let us prove 2.

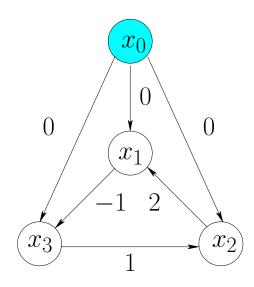
If G does not contain any negative cycle, then for all $1 \le i \le n$, we have $-\infty < \delta(x_0, x_i) < \infty$.

By the triangle inequality, $x_i \rightarrow \delta(x_0, x_i)$ is a solution.

Example (I)

$$x_1 - x_2 \le 2$$

 $x_2 - x_3 \le 1$
 $x_3 - x_1 \le -1$

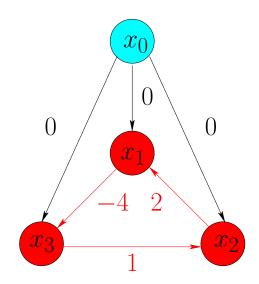


 $(x_1, x_2, x_3) = (\delta(x_0, x_1), \delta(x_0, x_2), \delta(x_0, x_2)) = (0, 0, -1)$ is a solution!

Example (II)

$$x_1 - x_2 \le 2$$

 $x_2 - x_3 \le 1$
 $x_3 - x_1 \le -4$



Infeasible!

Consistency Checks

- Consistency checks can be performed using Bellman-Ford in time $O(|V| \cdot |E|)$
- Other more efficient variants exist
 - Inconsistency explanations are negative cycles (minimal wrt. set inclusion)

Bibliography - Further reading

- Chao Wang, Franjo Ivancic, Malay K. Ganai, Aarti Gupta. Deciding Separation Logic Formulae by SAT and Incremental Negative Cycle Elimination. LPAR 2005: 322-336
 - Scott Cotton, Oded Maler. Fast and Flexible Difference Constraint Propagation for DPLL(T). SAT 2006: 170-183