Satisfiability Modulo Difference Logic

Combinatorial Problem Solving (CPS)

Albert Oliveras Enric Rodríguez-Carbonell

May 25, 2016

Basic Definitions

■ Given a directed graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbb{R}$, the weight $w(p)$ of a path $p=\left(v_{0}, \ldots, v_{k}\right)$ is

$$
w(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

- The distance $\delta(u, v)$ from u to v is

$$
\delta(u, v)= \begin{cases}\min \{w(p): u \stackrel{p}{\sim} v\} & \text { if there is a path from } u \text { to } v \\ \infty & \text { otherwise }\end{cases}
$$

- A shortest path from u to v is any path p such that $u \stackrel{p}{\sim} v$ and $w(p)=\delta(u, v)$

Difference Constraints

- A difference constraint
is a linear constraint of the form $x-y \bowtie k$, where:
- $\bowtie \in\{\leq, \geq,<,>,=, \neq\}$
- $\quad x$ and y are integer/real variables
- $k \in \mathbb{Z}$ or \mathbb{R}

■ Equivalent forms: $x \bowtie y+k, x+k \bowtie y$

- Ex. Let s_{a}, s_{b} be the starting times of two tasks a and b.
- $s_{a}+T \leq s_{b}$:
task b cannot start earlier than T minutes after task a (they use same resources, etc.)
- $s_{a} \leq s_{b}+T$:
task a cannot start later than T minutes after task b (the product of b to be used by a expires, etc.)

Difference Logic

■ Lits in Difference Logic (DL) are difference constraints
■ Some transformations are performed at parsing time

- If domain is \mathbb{Z} replace $x-y<k$ by $x-y \leq k-1$

■ If domain is \mathbb{R} replace $x-y<k$ by $x-y \leq k-\delta$

- δ is a sufficiently small real
- δ is not computed but used symbolically (like in De Moura's \& Dutertre's approach for LRA)

Difference Logic

■ Note any solution to a set of DL literals can be shifted (i.e. if σ is a solution then so is $\sigma^{\prime}(x)=\sigma(x)+k$)

■ This allows one to handle bounds $x \leq k$

- Introduce fresh variable zero
- Convert all bounds $x \leq k$ into x-zero $\leq k$
- Given a solution σ, shift it so that $\sigma($ zero $)=0$

Difference Logic

■ $x-y=k$ is replaced by $x-y \leq k \wedge x-y \geq k$
■ $x-y \neq k$ is replaced by $x-y<k \vee x-y>k$

- If we allowed (dis)equalities as literals, then:
- If domain is \mathbb{R}, then consistency check is polynomial
- If domain is \mathbb{Z}, then consistency check is NP-hard (k-colorability)
- $1 \leq c_{i} \leq k$ with $i=1 \ldots|V|$ encodes colors for vertexs
- $c_{i} \neq c_{j}$ if $(i, j) \in E$ encodes colorability constraint

■ Hence we can assume all literals are $x-y \leq k$

Constraint Graph

■ Given n variables $x_{1}, x_{2}, \ldots, x_{n}$ and
a system S of m difference constraints $x_{i}-x_{j} \leq k_{i j}$
we can construct the constraint graph $G=(V, E)$ where:

- $V=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$
(each vertex corresponds to a var plus extra vertex x_{0})
- $E=\left\{\left(x_{j}, x_{i}\right) \mid x_{i}-x_{j} \leq k_{i j} \in S\right\} \cup\left\{\left(x_{0}, x_{i}\right) \mid 1 \leq i \leq n\right\}$
(each edge corresponds to a constraint,
plus extra edges from x_{0} to variables)
Moreover, $w\left(x_{j}, x_{i}\right)=k_{i j}$ and $w\left(x_{0}, x_{i}\right)=0$
- G has $n+1$ vertices and $n+m$ edges
- Note that $\delta\left(x_{0}, x_{i}\right)<\infty$ for any x_{i}
- But $\delta\left(x_{0}, x_{i}\right)$ may not be well-defined if x_{i} belongs to a negative cycle

Constraint Graph

$$
\begin{aligned}
& x_{1}-x_{2} \leq 2 \\
& x_{2}-x_{3} \leq 1 \\
& x_{3}-x_{1} \leq-1
\end{aligned}
$$

Systems of Difference Constraints

Theorem. Given S a system of difference constraints, let $G=(V, E)$ be the corresponding constraint graph.

1. If G contains a negative cycle, then S is infeasible.
2. Otherwise $x_{i} \rightarrow \delta\left(x_{0}, x_{i}\right)$ is a solution to S.

Proof.

Let us prove 1 .
Let $c=\left(v_{0}, \ldots, v_{k}\right)$ be a negative cycle, which corresponds to constraints
$x\left(v_{i}\right)-x\left(v_{i-1}\right) \leq w\left(v_{i-1}, v_{i}\right),(1 \leq i \leq k)$ in S.
(note x_{0} cannot be in the cycle, as it has no entering edges)
By adding all these constraints we get the constraint $0 \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)$, which is trivially false as RHS is <0.

Systems of Difference Constraints

Theorem. Given S a system of difference constraints, let $G=(V, E)$ be the corresponding constraint graph.

1. If G contains a negative cycle, then S is infeasible.
2. Otherwise $x_{i} \rightarrow \delta\left(x_{0}, x_{i}\right)$ is a solution to S.

Proof.

Let us prove 2.
If G does not contain any negative cycle, then for all $1 \leq i \leq n$, we have $-\infty<\delta\left(x_{0}, x_{i}\right)<\infty$.
By the triangle inequality, $x_{i} \rightarrow \delta\left(x_{0}, x_{i}\right)$ is a solution.

Example (I)

$$
\begin{aligned}
& x_{1}-x_{2} \leq 2 \\
& x_{2}-x_{3} \leq 1 \\
& x_{3}-x_{1} \leq-1
\end{aligned}
$$

$$
\begin{gathered}
\left(x_{1}, x_{2}, x_{3}\right)=\left(\delta\left(x_{0}, x_{1}\right), \delta\left(x_{0}, x_{2}\right), \delta\left(x_{0}, x_{2}\right)\right)=(0,0,-1) \\
\text { is a solution! }
\end{gathered}
$$

Example (II)

$$
\begin{aligned}
& x_{1}-x_{2} \leq 2 \\
& x_{2}-x_{3} \leq 1 \\
& x_{3}-x_{1} \leq-4
\end{aligned}
$$

Infeasible!

Consistency Checks

■ Consistency checks can be performed using Bellman-Ford in time $O(|V| \cdot|E|)$

■ Other more efficient variants exist

- Inconsistency explanations are negative cycles (minimal wrt. set inclusion)

Bibliography - Further reading

■ Chao Wang, Franjo Ivancic, Malay K. Ganai, Aarti Gupta. Deciding Separation Logic Formulae by SAT and Incremental Negative Cycle Elimination. LPAR 2005: 322-336

■ Scott Cotton, Oded Maler. Fast and Flexible Difference Constraint Propagation for DPLL(T). SAT 2006: 170-183

