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some terminology

I the semantics (or formal semantics) of a formal logic L is
sometimes called the model theory of L.

I the model theory of classical propositional logic is defined in
terms of Boolean algebras: a model (or interpretation) for the
logic is a two-element Boolean algebra, i.e., an assignment of
truth-values to the propositional atoms with the standard boolean
operations on them (∧, ∨, and ¬).

I the standard boolean operations can be defined using truth tables.

I the model theory of intuitionistic propositional logic can be
defined in terms of Heyting algebras (also called pseudo-Boolean
algebras): a model (or interpretation) is a Heyting algebra.

I every Heyting algebra satisfying the law of excluded middle
a ∨ ¬a = > or, equivalently, the double negation law ¬¬a = a is
a Boolean algebra.
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introductory remarks
I for the semantics of classical propositional logic, it suffices to

consider the familiar two-element Boolean algebra .

I the two-element Boolean algebra is only one member of the infinite
family of Boolean algebras (for more on this topic, click here ).

I the two-element Boolean algebra is not the only way of defining the
semantics of propositional logic, e.g., we can use what are called
three-valued Kleene algebras to define the semantics of
propositional logic (click here ).

I Heyting algebras is not the only way of defining the semantics of
intuitionistic propositional logic, e.g., we can use what are called
Kripke structures instead (click here and here ).
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https://en.wikipedia.org/wiki/Intuitionistic_logic#Semantic


some familiar truth-tables:

logical “or” (∨) and logical “and” (∧)

ϕ ψ ϕ ∨ ψ
T T T
T F T
F T T
F F F

ϕ ψ ϕ ∧ ψ
T T T
T F F
F T F
F F F

logical “implication” (→)

ϕ ψ ϕ→ ψ

T T T
T F F
F T T
F F T

and similarly for “negation” (¬) and many other logical connectives . . . .
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a more complicated truth-table
for propositional WFF (P → ¬Q) → (Q ∨ ¬P):

I start with all the propositional atoms in the WFF

I incrementally, consider each sub-WFF, from innermost to outermost

P Q

¬P ¬Q P → ¬Q Q ∨ ¬P (P → ¬Q) → (Q ∨ ¬P)

T T

F F F T T

T F

F T T F F

F T

T F T T T

F F

T T T T T

I propositional WFF ϕ is satisfiable if there is an assignment of
truth-values to the propositional atoms which makes ϕ true.

I propositional WFF ϕ is a tautology if every assignment of truth-values
to the propositional atoms makes ϕ true.

I (P → ¬Q) → (Q ∨ ¬P) is satisfiable, but is not a tautology.
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another more complicated truth-table
related to the sequent (P ∧ ¬Q) → R, ¬R, P ` Q
shown valid, i.e., formally derivable by the proof rules at the end of Handout 02.

P Q R ¬Q ¬R P ∧ ¬Q (P ∧ ¬Q) → R
T T T F F F T
T T F F T F T
T F T T F T T
T F F T T T F
F T T F F F T
F T F F T F T
F F T T F F T
F F F T T F T

I when all the premises (shaded in gray ) evaluate to T, so does the
conclusion (shaded in green )

I in such a case we write (P ∧ ¬Q) → R, ¬R, P |= Q
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soundness and completeness

I If, for every interpretation/model/valuation
(i.e., assignment of truth values to the propositional atoms)
for which all of the WFF’s ϕ1, ϕ2, . . . , ϕn evaluate to T,
it is also the case that ψ evaluates to T, then we write:

ϕ1, ϕ2, . . . , ϕn |= ψ

and say that “ϕ1, ϕ2, . . . , ϕn semantically entails ψ”

or also “every model of ϕ1, ϕ2, . . . , ϕn is a model of ψ” .

I Theorem (Soundness):
If ϕ1, ϕ2, . . . , ϕn ` ψ then ϕ1, ϕ2, . . . , ϕn |= ψ.

I Theorem (Completeness):
If ϕ1, ϕ2, . . . , ϕn |= ψ then ϕ1, ϕ2, . . . , ϕn ` ψ.
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soundness and completeness
I simple version of soundness: if ` ψ then |= ψ

Informally, “if you can prove it, then it is true”.

I simple version of completeness: if |= ψ then ` ψ

Informally, “if it is true, then you can prove it”.

I if |= ψ, then we say ψ is a tautology.

I if ` ϕ, then we say ϕ is valid or a (formal) theorem.
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