CS 512, Spring 2017, Handout 03

Semantics of Classical Propositional Logic

(as opposed to Intuitionistic Propositional Logic)

Assaf Kfoury

January 19, 2017 (adjusted: January 25, 2017)

some terminology

- the semantics (or formal semantics) of a formal logic \mathcal{L} is sometimes called the model theory of \mathcal{L}.
- the model theory of classical propositional logic is defined in terms of Boolean algebras: a model (or interpretation) for the logic is a two-element Boolean algebra, i.e., an assignment of truth-values to the propositional atoms with the standard boolean operations on them (\wedge, \vee, and $\neg)$.
- the standard boolean operations can be defined using truth tables.
- the model theory of intuitionistic propositional logic can be defined in terms of Heyting algebras (also called pseudo-Boolean algebras): a model (or interpretation) is a Heyting algebra.
- every Heyting algebra satisfying the law of excluded middle $a \vee \neg a=\top$ or, equivalently, the double negation law $\neg \neg a=a$ is a Boolean algebra.

some terminology

- the semantics (or formal semantics) of a formal logic \mathcal{L} is sometimes called the model theory of \mathcal{L}.
- the model theory of classical propositional logic is defined in terms of Boolean algebras: a model (or interpretation) for the logic is a two-element Boolean algebra, i.e., an assignment of truth-values to the propositional atoms with the standard boolean operations on them $(\wedge, \vee$, and $\neg)$.
- the standard boolean operations can be defined using truth tables.
- the model theory of intuitionistic propositional logic can be defined in terms of Heyting algebras (also called pseudo-Boolean algebras): a model (or interpretation) is a Heyting algebra.
- every Heyting algebra satisfying the law of excluded middle $a \vee \neg a=\top$ or, equivalently, the double negation law $\neg \neg a=a$ is a Boolean algebra.

introductory remarks

- for the semantics of classical propositional logic, it suffices to consider the familiar two-element Boolean algebra .
- the two-element Boolean algebra is only one member of the infinite family of Boolean algebras (for more on this topic, click here).
- the two-element Boolean algebra is not the only way of defining the semantics of propositional logic, e.g., we can use what are called three-valued Kleene algebras to define the semantics of propositional logic (click here).
- Heyting algebras is not the only way of defining the semantics of intuitionistic propositional logic, e.g., we can use what are called Kripke structures instead (click here and here).

some familiar truth-tables:

some familiar truth-tables:

logical "or" (\vee) and logical "and" (\wedge)

φ	ψ	$\varphi \vee \psi$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}

φ	ψ	$\varphi \wedge \psi$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}

some familiar truth-tables:

logical "or" (\vee) and logical "and" (\wedge)

φ	ψ	$\varphi \vee \psi$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}

φ	ψ	$\varphi \wedge \psi$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}

logical "implication" (\rightarrow)

φ	ψ	$\varphi \rightarrow \psi$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}

some familiar truth-tables:

logical "or" (\vee) and logical "and" (\wedge)

φ	ψ	$\varphi \vee \psi$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}

φ	ψ	$\varphi \wedge \psi$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}

logical "implication" (\rightarrow)

φ	ψ	$\varphi \rightarrow \psi$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}

and similarly for "negation" (\neg) and many other logical connectives

a more complicated truth-table

for propositional WFF $(P \rightarrow \neg Q) \rightarrow(Q \vee \neg P)$:

- start with all the propositional atoms in the WFF
- incrementally, consider each sub-WFF, from innermost to outermost

P	Q
\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}

a more complicated truth-table

for propositional WFF $(P \rightarrow \neg Q) \rightarrow(Q \vee \neg P)$:

- start with all the propositional atoms in the WFF
- incrementally, consider each sub-WFF, from innermost to outermost

P	Q	$\neg P$
\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}

a more complicated truth-table

for propositional WFF $(P \rightarrow \neg Q) \rightarrow(Q \vee \neg P)$:

- start with all the propositional atoms in the WFF
- incrementally, consider each sub-WFF, from innermost to outermost

P	Q	$\neg P$	$\neg Q$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}

a more complicated truth-table

for propositional WFF $(P \rightarrow \neg Q) \rightarrow(Q \vee \neg P)$:

- start with all the propositional atoms in the WFF
- incrementally, consider each sub-WFF, from innermost to outermost

P	Q	$\neg P$	$\neg Q$	$P \rightarrow \neg Q$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}

a more complicated truth-table

for propositional WFF $(P \rightarrow \neg Q) \rightarrow(Q \vee \neg P)$:

- start with all the propositional atoms in the WFF
- incrementally, consider each sub-WFF, from innermost to outermost

P	Q	$\neg P$	$\neg Q$	$P \rightarrow \neg Q$	$Q \vee \neg P$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

a more complicated truth-table

 for propositional WFF $(P \rightarrow \neg Q) \rightarrow(Q \vee \neg P)$:- start with all the propositional atoms in the WFF
- incrementally, consider each sub-WFF, from innermost to outermost

P	Q	$\neg P$	$\neg Q$	$P \rightarrow \neg Q$	$Q \vee \neg P$	$(P \rightarrow \neg Q) \rightarrow(Q \vee \neg P)$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

a more complicated truth-table

for propositional WFF $(P \rightarrow \neg Q) \rightarrow(Q \vee \neg P)$:

- start with all the propositional atoms in the WFF
- incrementally, consider each sub-WFF, from innermost to outermost

P	Q	$\neg P$	$\neg Q$	$P \rightarrow \neg Q$	$Q \vee \neg P$	$(P \rightarrow \neg Q) \rightarrow(Q \vee \neg P)$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

- propositional WFF φ is satisfiable if there is an assignment of truth-values to the propositional atoms which makes φ true.
- propositional WFF φ is a tautology if every assignment of truth-values to the propositional atoms makes φ true.

a more complicated truth-table

for propositional WFF $(P \rightarrow \neg Q) \rightarrow(Q \vee \neg P)$:

- start with all the propositional atoms in the WFF
- incrementally, consider each sub-WFF, from innermost to outermost

P	Q	$\neg P$	$\neg Q$	$P \rightarrow \neg Q$	$Q \vee \neg P$	$(P \rightarrow \neg Q) \rightarrow(Q \vee \neg P)$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

- propositional WFF φ is satisfiable if there is an assignment of truth-values to the propositional atoms which makes φ true.
- propositional WFF φ is a tautology if every assignment of truth-values to the propositional atoms makes φ true.
- $(P \rightarrow \neg Q) \rightarrow(Q \vee \neg P)$ is satisfiable, but is not a tautology.

another more complicated truth-table

related to the sequent $(P \wedge \neg Q) \rightarrow R, \neg R, P \vdash Q$
shown valid, i.e., formally derivable by the proof rules at the end of Handout 02.

another more complicated truth-table

related to the sequent $(P \wedge \neg Q) \rightarrow R, \neg R, P \vdash Q$
shown valid, i.e., formally derivable by the proof rules at the end of Handout 02.

P	Q	R	$\neg Q$	$\neg R$	$P \wedge \neg Q$	$(P \wedge \neg Q) \rightarrow R$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}

another more complicated truth-table

related to the sequent $(P \wedge \neg Q) \rightarrow R, \neg R, P \vdash Q$
shown valid, i.e., formally derivable by the proof rules at the end of Handout 02.

P	Q	R	$\neg Q$	$\neg R$	$P \wedge \neg Q$	$(P \wedge \neg Q) \rightarrow R$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}

- when all the premises (shaded in gray) evaluate to \mathbf{T}, so does the conclusion (shaded in green)

another more complicated truth-table

related to the sequent $(P \wedge \neg Q) \rightarrow R, \neg R, P \vdash Q$
shown valid, i.e., formally derivable by the proof rules at the end of Handout 02.

P	Q	R	$\neg Q$	$\neg R$	$P \wedge \neg Q$	$(P \wedge \neg Q) \rightarrow R$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}

- when all the premises (shaded in gray) evaluate to \mathbf{T}, so does the conclusion (shaded in green)
- in such a case we write $(P \wedge \neg Q) \rightarrow R, \neg R, P \models Q$

soundness and completeness

soundness and completeness

- If, for every interpretation/model/valuation (i.e., assignment of truth values to the propositional atoms) for which all of the WFF's $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ evaluate to \mathbf{T}, it is also the case that ψ evaluates to \mathbf{T}, then we write:

$$
\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi
$$

and say that " $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ semantically entails ψ " or also "every model of $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ is a model of ψ ".

soundness and completeness

- If, for every interpretation/model/valuation (i.e., assignment of truth values to the propositional atoms) for which all of the WFF's $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ evaluate to \mathbf{T}, it is also the case that ψ evaluates to \mathbf{T}, then we write:

$$
\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi
$$

and say that " $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ semantically entails ψ " or also "every model of $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ is a model of ψ ".

- Theorem (Soundness):

If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$.

soundness and completeness

- If, for every interpretation/model/valuation (i.e., assignment of truth values to the propositional atoms) for which all of the WFF's $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ evaluate to \mathbf{T}, it is also the case that ψ evaluates to \mathbf{T}, then we write:

$$
\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi
$$

and say that " $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ semantically entails ψ "
or also "every model of $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}$ is a model of ψ ".

- Theorem (Soundness):

If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$.

- Theorem (Completeness):

If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$.

soundness and completeness

- simple version of soundness: if $\vdash \psi$ then $\models=\psi$

Informally, "if you can prove it, then it is true".

- simple version of completeness: if $\models \psi$ then $\vdash \psi$

Informally, "if it is true, then you can prove it".

- if $\models \psi$, then we say ψ is a tautology.
- if $\vdash \varphi$, then we say φ is valid or a (formal) theorem.

