CS 512, Spring 2017, Handout 04 Classical Propositional Logic versus Intuitionistic Propositional Logic

Assaf Kfoury

January 19, 2017

Assaf Kfoury, CS 512, Spring 2017, Handout 04

examples of **classical tautologies** that are also **intuitionistic tautologies**

<u>Yet to be studied</u>: An **intuitionistic tautology** is a WFF that is true in every Heyting algebra. There are also **soundness** and **completeness** theorems for intuitionistic logic.

examples of **classical tautologies** that are also **intuitionistic tautologies**

<u>Yet to be studied</u>: An **intuitionistic tautology** is a WFF that is true in every Heyting algebra. There are also **soundness** and **completeness** theorems for intuitionistic logic.

1.
$$P \rightarrow (Q \rightarrow P)$$
 or, with the convention that " \rightarrow " is right-associative,
 $P \rightarrow Q \rightarrow P$
2. $P \rightarrow (Q \rightarrow (P \land Q))$, *i.e.*, $P \rightarrow Q \rightarrow (P \land Q)$
3. $((P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))))$
i.e., $(P \rightarrow Q \rightarrow R) \rightarrow (P \rightarrow Q) \rightarrow (P \rightarrow R)$
4. $P \rightarrow \neg \neg P$
5. $\neg (P \land \neg P)$
6. $(\neg P \lor Q) \rightarrow (P \rightarrow Q)$
7. $(P \rightarrow Q) \rightarrow (\neg Q \rightarrow \neg P)$

examples of **classical tautologies** that are **not intuitionistic tautologies**

1. $P \vee \neg P$ 2. $\neg \neg P \rightarrow P$ 3. $(P \rightarrow Q) \rightarrow (\neg P \lor Q)$ 4. $\neg (P \land O) \rightarrow (\neg P \lor \neg O)$ 5. $(\neg P \rightarrow Q) \rightarrow (\neg Q \rightarrow P)$ 6. $(\neg P \rightarrow \neg Q) \rightarrow (Q \rightarrow P)$ 7. $((P \rightarrow O) \rightarrow P) \rightarrow P$