CS 512, Spring 2017, Handout 05

Semantics of Classical Propositional Logic

 (Continued)Soundness, Completeness, Compactness

Assaf Kfoury

January 25, 2017

soundness

soundness

- Let Γ a (possibly infinite) set of propositional WFF's.

If, for every model/interpretation/valuation
(i.e., assignment of truth values to prop atoms), it holds that:

- whenever all the WFF's in Γ evaluate to \mathbf{T},
- it is also the case that ψ evaluates to \mathbf{T}, then we write:

$$
\Gamma \models \psi \quad \text { in words, " } \Gamma \text { semantically entails } \psi "
$$

soundness

- Let Γ a (possibly infinite) set of propositional WFF's.

If, for every model/interpretation/valuation
(i.e., assignment of truth values to prop atoms), it holds that:

- whenever all the WFF's in Γ evaluate to \mathbf{T},
- it is also the case that ψ evaluates to \mathbf{T},
then we write:

$$
\Gamma \models \psi \quad \text { in words, " } \Gamma \text { semantically entails } \psi "
$$

- Theorem (Soundness):

```
If }\Gamma\vdash\psi\mathrm{ then }\Gamma\models\psi\mathrm{ .
```

(Slightly stronger than the statement of Soundness in [LCS, Theorem 1.35, p 46]:
If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$.)

soundness

- Let Γ a (possibly infinite) set of propositional WFF's.

If, for every model/interpretation/valuation
(i.e., assignment of truth values to prop atoms), it holds that:

- whenever all the WFF's in Γ evaluate to \mathbf{T},
- it is also the case that ψ evaluates to \mathbf{T}, then we write:
$\Gamma \models \psi \quad$ in words, " Γ semantically entails ψ "
- Theorem (Soundness): If $\Gamma \vdash \psi$ then $\Gamma \models \psi$.
(Slightly stronger than the statement of Soundness in [LCS, Theorem 1.35, p 46]:
If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$.)
- Proof idea: "Course-of-values" induction on $n \geqslant 1$ (in a later Handout 06).

completeness

completeness

- Theorem (Completeness): If $\Gamma \models \psi$ then $\Gamma \vdash \psi$.
(Stronger than the statement of Completeness in [LCS, Corollary 1.39, p 53]: If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$.)

completeness

- Theorem (Completeness): If $\Gamma \models \psi$ then $\Gamma \vdash \psi$.
(Stronger than the statement of Completeness in [LCS, Corollary 1.39, p 53]:
If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$.)
- Proof idea in [LCS] (which works if Γ is a finite set $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$):

Establish 3 preliminary results. From $\varphi_{1}, \ldots, \varphi_{n} \models \psi$, show that:

completeness

- Theorem (Completeness): If $\Gamma \models \psi$ then $\Gamma \vdash \psi$.
(Stronger than the statement of Completeness in [LCS, Corollary 1.39, p 53]:
If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$.)
- Proof idea in [LCS] (which works if Γ is a finite set $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$):

Establish 3 preliminary results. From $\varphi_{1}, \ldots, \varphi_{n} \vDash \psi$, show that:

1. $\models \varphi_{1} \rightarrow\left(\varphi_{2} \rightarrow\left(\varphi_{3} \rightarrow\left(\cdots\left(\varphi_{n} \rightarrow \psi\right) \cdots\right)\right)\right)$ holds.

completeness

- Theorem (Completeness): If $\Gamma \models \psi$ then $\Gamma \vdash \psi$.
(Stronger than the statement of Completeness in [LCS, Corollary 1.39, p 53]:
If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$.)
- Proof idea in [LCS] (which works if Γ is a finite set $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$):

Establish 3 preliminary results. From $\varphi_{1}, \ldots, \varphi_{n} \models \psi$, show that:

1. $\models \varphi_{1} \rightarrow\left(\varphi_{2} \rightarrow\left(\varphi_{3} \rightarrow\left(\cdots\left(\varphi_{n} \rightarrow \psi\right) \cdots\right)\right)\right)$ holds.
2. $\vdash \varphi_{1} \rightarrow\left(\varphi_{2} \rightarrow\left(\varphi_{3} \rightarrow\left(\cdots\left(\varphi_{n} \rightarrow \psi\right) \cdots\right)\right)\right.$) is a valid sequent.

completeness

- Theorem (Completeness): If $\Gamma \models \psi$ then $\Gamma \vdash \psi$.
(Stronger than the statement of Completeness in [LCS, Corollary 1.39, p 53]:
If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$.)
- Proof idea in [LCS] (which works if Γ is a finite set $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$):

Establish 3 preliminary results. From $\varphi_{1}, \ldots, \varphi_{n} \models \psi$, show that:

1. $\models \varphi_{1} \rightarrow\left(\varphi_{2} \rightarrow\left(\varphi_{3} \rightarrow\left(\cdots\left(\varphi_{n} \rightarrow \psi\right) \cdots\right)\right)\right)$ holds.
2. $\vdash \varphi_{1} \rightarrow\left(\varphi_{2} \rightarrow\left(\varphi_{3} \rightarrow\left(\cdots\left(\varphi_{n} \rightarrow \psi\right) \cdots\right)\right)\right)$ is a valid sequent.
3. $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$ is a valid sequent.

completeness

- Theorem (Completeness): If $\Gamma \models \psi$ then $\Gamma \vdash \psi$.
(Stronger than the statement of Completeness in [LCS, Corollary 1.39, p 53]:
If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$.)
- Proof idea in [LCS] (which works if Γ is a finite set $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$):

Establish 3 preliminary results. From $\varphi_{1}, \ldots, \varphi_{n} \models \psi$, show that:

1. $\models \varphi_{1} \rightarrow\left(\varphi_{2} \rightarrow\left(\varphi_{3} \rightarrow\left(\cdots\left(\varphi_{n} \rightarrow \psi\right) \cdots\right)\right)\right)$ holds.
2. $\vdash \varphi_{1} \rightarrow\left(\varphi_{2} \rightarrow\left(\varphi_{3} \rightarrow\left(\cdots\left(\varphi_{n} \rightarrow \psi\right) \cdots\right)\right)\right)$ is a valid sequent.
3. $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$ is a valid sequent.

- If Γ is infinite, we need another preliminary result: Compactness

compactness

compactness

- Γ is said to be satisfiable if there is a model/interpretation/valuation which satisfies/makes true every φ in Γ.

compactness

- Γ is said to be satisfiable if there is a model/interpretation/valuation which satisfies/makes true every φ in Γ.
- Theorem (Compactness) (not in [LCS]):
Γ is satisfiable iff every finite subset of Γ is satisfiable.

compactness

- Γ is said to be satisfiable if there is a model/interpretation/valuation which satisfies/makes true every φ in Γ.
- Theorem (Compactness) (not in [LCS]):
Γ is satisfiable iff every finite subset of Γ is satisfiable.
- Corollary (not in [LCS]): If $\Gamma \models \psi$ then there is a finite subset $\Gamma_{0} \subseteq \Gamma$ such that $\Gamma_{0} \models \psi$.

compactness

- Γ is said to be satisfiable if there is a model/interpretation/valuation which satisfies/makes true every φ in Γ.
- Theorem (Compactness) (not in [LCS]):
Γ is satisfiable iff every finite subset of Γ is satisfiable.
- Corollary (not in [LCS]): If $\Gamma \models \psi$ then there is a finite subset $\Gamma_{0} \subseteq \Gamma$ such that $\Gamma_{0} \models \psi$.
- For proofs of Compactness above and its corollary, click here .

