CS 512, Spring 2017, Handout 06 *Classical* Propositional Logic: Proof Sketch of its Soundness

Assaf Kfoury

January 25, 2017

Assaf Kfoury, CS 512, Spring 2017, Handout 06

Theorem (Soundness):

If $\varphi_1, \varphi_2, \ldots, \varphi_n \vdash \psi$ then $\varphi_1, \varphi_2, \ldots, \varphi_n \models \psi$.

Theorem (Soundness):

If $\varphi_1, \varphi_2, \ldots, \varphi_n \vdash \psi$ then $\varphi_1, \varphi_2, \ldots, \varphi_n \models \psi$.

Proof: Course-of-values induction

(sometimes called **strong induction**) on $k \ge 1$, where *k* is number of lines in a formal proof.

Theorem (Soundness):

If $\varphi_1, \varphi_2, \ldots, \varphi_n \vdash \psi$ then $\varphi_1, \varphi_2, \ldots, \varphi_n \models \psi$.

► Proof: Course-of-values induction (sometimes called strong induction) on k ≥ 1, where k is number of lines in a formal proof.

► Base step: Consider
$$k = 1$$
 (quite trivial!).
In this case $n = k = 1$.

Theorem (Soundness):

If $\varphi_1, \varphi_2, \ldots, \varphi_n \vdash \psi$ then $\varphi_1, \varphi_2, \ldots, \varphi_n \models \psi$.

► Proof: Course-of-values induction (sometimes called strong induction) on k ≥ 1, where k is number of lines in a formal proof.

► Base step: Consider
$$k = 1$$
 (quite trivial!).
In this case $n = k = 1$.

From a given sequent $\varphi_1 \vdash \psi$, we want to show $\varphi_1 \models \psi$.

Theorem (Soundness):

If $\varphi_1, \varphi_2, \ldots, \varphi_n \vdash \psi$ then $\varphi_1, \varphi_2, \ldots, \varphi_n \models \psi$.

► Proof: Course-of-values induction (sometimes called strong induction) on k ≥ 1, where k is number of lines in a formal proof.

▶ Base step: Consider
$$k = 1$$
 (quite trivial!).
In this case $n = k = 1$.

From a given sequent $\varphi_1 \vdash \psi$, we want to show $\varphi_1 \models \psi$.

Such a sequent implies $\varphi_1 = \psi$, i.e., $\psi \vdash \psi$.

Theorem (Soundness):

If $\varphi_1, \varphi_2, \ldots, \varphi_n \vdash \psi$ then $\varphi_1, \varphi_2, \ldots, \varphi_n \models \psi$.

► Proof: Course-of-values induction (sometimes called strong induction) on k ≥ 1, where k is number of lines in a formal proof.

▶ Base step: Consider
$$k = 1$$
 (quite trivial!).
In this case $n = k = 1$.

From a given sequent $\varphi_1 \vdash \psi$, we want to show $\varphi_1 \models \psi$.

Such a sequent implies $\varphi_1 = \psi$, i.e., $\psi \vdash \psi$.

Hence, $\psi \models \psi$,

Theorem (Soundness):

If $\varphi_1, \varphi_2, \ldots, \varphi_n \vdash \psi$ then $\varphi_1, \varphi_2, \ldots, \varphi_n \models \psi$.

► Proof: Course-of-values induction (sometimes called strong induction) on k ≥ 1, where k is number of lines in a formal proof.

► Base step: Consider
$$k = 1$$
 (quite trivial!).
In this case $n = k = 1$.

From a given sequent $\varphi_1 \vdash \psi$, we want to show $\varphi_1 \models \psi$.

Such a sequent implies $\varphi_1 = \psi$, i.e., $\psi \vdash \psi$.

Hence, $\psi \models \psi$,

which is the same as $\varphi_1 \models \psi$. (QED for base case)

Theorem (Soundness):

If $\varphi_1, \varphi_2, \ldots, \varphi_n \vdash \psi$ then $\varphi_1, \varphi_2, \ldots, \varphi_n \models \psi$.

► Proof: Course-of-values induction (sometimes called strong induction) on k ≥ 1, where k is number of lines in a formal proof.

▶ Base step: Consider
$$k = 1$$
 (quite trivial!).
In this case $n = k = 1$.

From a given sequent $\varphi_1 \vdash \psi$, we want to show $\varphi_1 \models \psi$.

Such a sequent implies $\varphi_1 = \psi$, i.e., $\psi \vdash \psi$.

Hence, $\psi \models \psi$,

which is the same as $\varphi_1 \models \psi$. (QED for base case)

▶ Inductive step: Consider arbitrary $k \ge 2$. (Actually for $1 \le k \le n$, it is trivial again. Interesting case: $k \ge n$.)

Theorem (Soundness):

If $\varphi_1, \varphi_2, \ldots, \varphi_n \vdash \psi$ then $\varphi_1, \varphi_2, \ldots, \varphi_n \models \psi$.

► Proof: Course-of-values induction (sometimes called strong induction) on k ≥ 1, where k is number of lines in a formal proof.

▶ Base step: Consider
$$k = 1$$
 (quite trivial!).
In this case $n = k = 1$.

From a given sequent $\varphi_1 \vdash \psi$, we want to show $\varphi_1 \models \psi$.

Such a sequent implies $\varphi_1 = \psi$, i.e., $\psi \vdash \psi$.

Hence, $\psi \models \psi$,

which is the same as $\varphi_1 \models \psi$. (QED for base case)

Inductive step: Consider arbitrary k ≥ 2.
 (Actually for 1 ≤ k ≤ n, it is trivial again. Interesting case: k ≥ n.)
 Induction hypothesis (IH): Soundness holds for every k' < k.

- 1
 φ_1 premise

 2
 φ_2 premise

 :
 :
 .

 n
 φ_n premise

 :
 :
 .

 h
 φ_k instification
- $k \quad \psi$ justification

- 1 premise φ_1 2 premise φ_2 ÷ : premise п φ_n ÷ ٠ : k justification ψ
- ▶ Last line in the proof, line *k*, is the result of 1 or 2 or . . . preceding it.

- 1 φ_1 premise
- 2 φ_2 premise
- : :
- *n* φ_n premise
- : :
- $k \quad \psi \quad ext{justification}$
- ► Last line in the proof, line *k*, is the result of 1 or 2 or . . . preceding it.
- Consider each possible "justification" separately: finitely many.

- 1 φ_1 premise
- 2 φ_2 premise
- : :
- *n* φ_n premise
- : :
- $k \quad \psi \quad ext{justification}$
- ► Last line in the proof, line *k*, is the result of 1 or 2 or . . . preceding it.
- Consider each possible "justification" separately: finitely many.
- Suppose "justification" is "\i".

This means line *k* uses lines k_1 and k_2 , with $k_1, k_2 < k$.

- 1 φ_1 premise
- 2 φ_2 premise
- : :
- *n* φ_n premise
- : :
- $k \quad \psi \quad ext{justification}$
- ▶ Last line in the proof, line *k*, is the result of 1 or 2 or . . . preceding it.
- Consider each possible "justification" separately: finitely many.
- Suppose "justification" is "∧i". This means line k uses lines k₁ and k₂, with k₁, k₂ < k.</p>
- Use IH on $\varphi_1, \varphi_2, \ldots, \varphi_n \vdash \psi_{k_1}$ and $\varphi_1, \varphi_2, \ldots, \varphi_n \vdash \psi_{k_2}$.