CS 512, Spring 2017, Handout 06 Classical Propositional Logic: Proof Sketch of its Soundness

Assaf Kfoury

January 25, 2017

soundness once more

- Theorem (Soundness):

If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$.

soundness once more

- Theorem (Soundness):

If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$.

- Proof: Course-of-values induction (sometimes called strong induction) on $k \geqslant 1$, where k is number of lines in a formal proof.

soundness once more

- Theorem (Soundness):

If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$.

- Proof: Course-of-values induction (sometimes called strong induction) on $k \geqslant 1$, where k is number of lines in a formal proof.
- Base step: Consider $k=1$ (quite trivial!). In this case $n=k=1$.

soundness once more

- Theorem (Soundness):

If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$.

- Proof: Course-of-values induction (sometimes called strong induction) on $k \geqslant 1$, where k is number of lines in a formal proof.
- Base step: Consider $k=1$ (quite trivial!). In this case $n=k=1$.

From a given sequent $\varphi_{1} \vdash \psi$, we want to show $\varphi_{1} \models \psi$.

soundness once more

- Theorem (Soundness):

If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$.

- Proof: Course-of-values induction (sometimes called strong induction) on $k \geqslant 1$, where k is number of lines in a formal proof.
- Base step: Consider $k=1$ (quite trivial!). In this case $n=k=1$.

From a given sequent $\varphi_{1} \vdash \psi$, we want to show $\varphi_{1} \models \psi$. Such a sequent implies $\varphi_{1}=\psi$, i.e., $\psi \vdash \psi$.

soundness once more

- Theorem (Soundness):

If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$.

- Proof: Course-of-values induction (sometimes called strong induction) on $k \geqslant 1$, where k is number of lines in a formal proof.
- Base step: Consider $k=1$ (quite trivial!). In this case $n=k=1$.

From a given sequent $\varphi_{1} \vdash \psi$, we want to show $\varphi_{1} \models \psi$. Such a sequent implies $\varphi_{1}=\psi$, i.e., $\psi \vdash \psi$. Hence, $\psi \models \psi$,

soundness once more

- Theorem (Soundness):

If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$.

- Proof: Course-of-values induction (sometimes called strong induction) on $k \geqslant 1$, where k is number of lines in a formal proof.
- Base step: Consider $k=1$ (quite trivial!). In this case $n=k=1$.

From a given sequent $\varphi_{1} \vdash \psi$, we want to show $\varphi_{1} \models \psi$.
Such a sequent implies $\varphi_{1}=\psi$, i.e., $\psi \vdash \psi$. Hence, $\psi \models \psi$, which is the same as $\varphi_{1} \models \psi$.
(QED for base case)

soundness once more

- Theorem (Soundness):

If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$.

- Proof: Course-of-values induction (sometimes called strong induction) on $k \geqslant 1$, where k is number of lines in a formal proof.
- Base step: Consider $k=1$ (quite trivial!).

In this case $n=k=1$.
From a given sequent $\varphi_{1} \vdash \psi$, we want to show $\varphi_{1} \models \psi$.
Such a sequent implies $\varphi_{1}=\psi$, i.e., $\psi \vdash \psi$. Hence, $\psi \models \psi$, which is the same as $\varphi_{1} \models \psi$.
(QED for base case)

- Inductive step: Consider arbitrary $k \geqslant 2$.
(Actually for $1 \leqslant k \leqslant n$, it is trivial again. Interesting case: $k \geqslant n$.)

soundness once more

- Theorem (Soundness):

If $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi$ then $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \models \psi$.

- Proof: Course-of-values induction (sometimes called strong induction) on $k \geqslant 1$, where k is number of lines in a formal proof.
- Base step: Consider $k=1$ (quite trivial!).

In this case $n=k=1$.
From a given sequent $\varphi_{1} \vdash \psi$, we want to show $\varphi_{1} \models \psi$.
Such a sequent implies $\varphi_{1}=\psi$, i.e., $\psi \vdash \psi$. Hence, $\psi \models \psi$, which is the same as $\varphi_{1} \models \psi$.
(QED for base case)

- Inductive step: Consider arbitrary $k \geqslant 2$.
(Actually for $1 \leqslant k \leqslant n$, it is trivial again. Interesting case: $k \geqslant n$.) Induction hypothesis (IH): Soundness holds for every $k^{\prime}<k$.

Structure of a formal proof with n premises:

1	φ_{1}	premise
2	φ_{2}	premise
\vdots	\vdots	
n	φ_{n}	premise
\vdots	\vdots	
k	ψ	justification

Structure of a formal proof with n premises:
$1 \quad \varphi_{1} \quad$ premise
$2 \varphi_{2}$ premise
$\vdots \quad \vdots$
$n \quad \varphi_{n} \quad$ premise
$\vdots \quad \vdots$
$k \quad \psi \quad$ justification

- Last line in the proof, line k, is the result of 1 or 2 or . . . preceding it.

Structure of a formal proof with n premises:
$1 \quad \varphi_{1} \quad$ premise
$2 \varphi_{2}$ premise
$\vdots \quad \vdots$
$n \quad \varphi_{n} \quad$ premise
$k \quad \psi \quad$ justification

- Last line in the proof, line k, is the result of 1 or 2 or . . preceding it.
- Consider each possible "justification" separately: finitely many.

Structure of a formal proof with n premises:

1	φ_{1}	premise
2	φ_{2}	premise
\vdots	\vdots	
n	φ_{n}	premise
\vdots	\vdots	
k	ψ	justification

- Last line in the proof, line k, is the result of 1 or 2 or . . preceding it.
- Consider each possible "justification" separately: finitely many.
- Suppose "justification" is " $\wedge i$ ".

This means line k uses lines k_{1} and k_{2}, with $k_{1}, k_{2}<k$.

Structure of a formal proof with n premises:

1	φ_{1}	premise
2	φ_{2}	premise
\vdots	\vdots	
n	φ_{n}	premise
\vdots	\vdots	
k	ψ	justification

- Last line in the proof, line k, is the result of 1 or 2 or . . preceding it.
- Consider each possible "justification" separately: finitely many.
- Suppose "justification" is " $\wedge \mathrm{i}$ ".

This means line k uses lines k_{1} and k_{2}, with $k_{1}, k_{2}<k$.

- Use IH on $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi_{k_{1}}$ and $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n} \vdash \psi_{k_{2}}$.

