CS 512, Spring 2017, Handout 08 **Do You Believe de Morgan's Laws?**

Assaf Kfoury

January 31, 2017

Assaf Kfoury, CS 512, Spring 2017, Handout 08

page 1 of 22

Do You Believe de Morgan's Laws Are Tautologies?

Do You Believe de Morgan's Laws Are Tautologies?

- Of course you believe they are!
- But now, for each, choose a most efficient procedure to confirm it!

Do You Believe de Morgan's Laws Are Tautologies?

- Of course you believe they are!
- But now, for each, choose a most efficient procedure to confirm it!
- de Morgan's laws can be expressed in four propositional WFF's:

1.
$$\neg (p \land q) \rightarrow (\neg p \lor \neg q)$$

2. $(\neg p \lor \neg q) \rightarrow \neg (p \land q)$
3. $\neg (p \lor q) \rightarrow (\neg p \land \neg q)$
4. $(\neg p \land \neg q) \rightarrow \neg (p \lor q)$

or, in the form of four valid/formally deducible sequents:

1.
$$\vdash \neg (p \land q) \rightarrow (\neg p \lor \neg q)$$

2. $\vdash (\neg p \lor \neg q) \rightarrow \neg (p \land q)$
3. $\vdash \neg (p \lor q) \rightarrow (\neg p \land \neg q)$
4. $\vdash (\neg p \land \neg q) \rightarrow \neg (p \lor q)$

Available methods

Already discussed:

- Natural-deduction formal proofs?
- Truth-tables?

Yet to be discussed:

- Analytic tableaux?
- Resolution?
- DP or DPLL procedures?

Available methods

Already discussed:

- Natural-deduction formal proofs?
- Truth-tables?

Yet to be discussed:

- Analytic tableaux?
- Resolution?
- DP or DPLL procedures?

In this handout we restricted the comparison to **natural-deduction proofs** and **truth-tables**. We delay the comparaison with the other methods to later handouts.

Natural-deduction proof of de Morgan's law (1):

1	$\neg(p \land q)$	assume
2	$\neg(\neg p \lor \neg q)$	assume
3	$\neg p$	assume
4	$(\neg p \lor \neg q)$	∨i 3
5	\perp	¬e 2,4
6	$\neg \neg p$	¬i 3-5
7	$\neg q$	assume
8	$\neg p \lor \neg q$	∨i 7
9	\perp	¬e 2,8
10	$\neg \neg q$	−i 7-9
11	p	¬¬e 6
12	q	¬¬e 10
13	$p \wedge q$	$\wedge i 11, 12$
14	\perp	$\neg e 1, 13$
15	$\neg\neg(\neg p \lor \neg q)$	¬i 2-14
16	$(\neg p \lor \neg q)$	¬¬e 15
17	$\neg (p \land q) \to (\neg p \lor \neg q)$	\rightarrow i 1-16

Natural-deduction proof of de Morgan's law (2):

1	$\neg p \lor \neg q$	assume
2	$p \wedge q$	assume
3	p	$\wedge e_1$
4	q	$\wedge e_2$
5	$\neg p$	assume
6	$\neg q$	assume
7	p	assume
8	\perp	¬e 4,6
9	$\neg p$	¬i 7-8
10	$\neg p$	$\lor e 1, 5-5, 6-9$
11	\perp	¬e 3,10
12	$\neg(p \land q)$	¬i 2-11
13	$(\neg p \lor \neg q) \to \neg (p \land q)$	\rightarrow i 1-12

Natural-deduction proof of de Morgan's law (3):

1	$\neg(p \lor q)$	assume
2	p	assume
3	$p \lor q$	$\vee i 2$
4	\perp	$\neg e 1, 3$
5	$\neg p$	¬i 2-4
6	q	assume
7	$p \lor q$	∨i 6
8	\perp	$\neg e 1,7$
9	$\neg q$	¬i 6-8
10	$\neg p \land \neg q$	∧i 5,9
11	$\neg (p \lor q) \to (\neg p \land \neg q)$	→i 1-10

Natural-deduction proof of de Morgan's law (4):

1	$\neg p \land \neg q$	assume
2	$\neg p$	$\wedge e 1$
3	$\neg q$	$\wedge e 1$
4	$p \lor q$	assume
5	p	assume
6	q	assume
7	$\neg p$	assume
8	\perp	¬e 3,6
9	$\neg \neg p$	¬i 7-8
10	p	¬¬е 9
11	p	∨e 4,5-5,6-10
12	\perp	¬e 2,11
13	$\neg(p \lor q)$	¬i 4-12
14	$(\neg p \land \neg q) \to \neg (p \lor q)$	→i 1-13

Natural-deduction proof of de Morgan's law (4), once more:

We organize the proof differently to make explicit how the rule " \lor e" is used on line 10; " \lor e" has three antecedents, two of which are boxes (here: the first box has one line, {line 5}, and the second box has five lines, {line 5, line 6, line 7, line 8, line 9}.

1	$\neg p \land \neg q$			assume
2	$\neg p$			$\wedge e_1 1$
3	$\neg q$			$\wedge e_2 1$
4	$p \lor q$			assume
5	p	assume	q	assume
6			$\neg p$	assume
7			1	¬e 3,5
8			$\neg \neg p$	−i 6-7
9			p	¬¬e 8
10	p			$\lor e 4, 5-5, 5-9$
11	\perp			¬e 2,10
12	$\neg(p \lor q)$			−i 4-11
13	$(\neg p \land \neg q) \to \neg (p \lor q)$			→i 1-12

Truth-table verification of de Morgan's laws (1) and (3):

р	q	$ \neg p$	$\neg q$	$p \wedge q$	$\neg p \lor \neg q$	$\neg (p \land q)$	$\neg (p \land q) \rightarrow (\neg p \lor \neg q)$
Т	Т	F	F	Т	F	F	Т
Т	F	F	Т	F	Т	Т	Т
F	Т	Т	F	F	Т	Т	Т
F	F	Т	Т	F	Т	Т	Т
р	q	$ \neg p$	$\neg q$	$p \lor q$	$ \neg p \land \neg q$	$\neg (p \lor q)$	$\neg (p \lor q) \to (\neg p \land \neg q)$
		<i>p</i>			$\neg p \land \neg q$ F	$\neg (p \lor q)$ F	$ \begin{array}{c} \neg (p \lor q) \to (\neg p \land \neg q) \\ \hline \mathbf{T} \end{array} $
	Т						$ \begin{array}{c} \neg (p \lor q) \to (\neg p \land \neg q) \\ \hline \mathbf{T} \\ \hline \mathbf{T} \end{array} $
Т	Т	F F		Т	F	F	$ \begin{array}{c} \neg (p \lor q) \to (\neg p \land \neg q) \\ \hline \mathbf{T} \\ \hline \mathbf{T} \\ \hline \mathbf{T} \\ \hline \mathbf{T} \end{array} $

and similarly for de Morgan's laws (2) and (4)

For the four de Morgan's laws on slide 2, each with two propositional variables p and q, truth-tables beat natural-deduction proofs – or do they?

- For the four de Morgan's laws on slide 2, each with two propositional variables p and q, truth-tables beat natural-deduction proofs – or do they?
- Two of the four de Morgan's laws are intuitionistically valid/tautologies and two are not. The truth tables do not show it, the natural-deduction proofs show it:

- For the four de Morgan's laws on slide 2, each with two propositional variables p and q, truth-tables beat natural-deduction proofs – or do they?
- Two of the four de Morgan's laws are intuitionistically valid/tautologies and two are not. The truth tables do not show it, the natural-deduction proofs show it:
 - the formal proofs for de Morgan's (1) and (4) on slide 7 and slide 10 are not valid intuitionistically (they use rule "¬¬e").
 - the formal proofs for de Morgan's (2) and (3) on slide 8 and slide 9 are valid intuitionistically (they do not use rule "¬¬e" nor the two rules derived from it, LEM and PBC).

- For the four de Morgan's laws on slide 2, each with two propositional variables p and q, truth-tables beat natural-deduction proofs – or do they?
- Two of the four de Morgan's laws are intuitionistically valid/tautologies and two are not. The truth tables do not show it, the natural-deduction proofs show it:
 - the formal proofs for de Morgan's (1) and (4) on slide 7 and slide 10 are not valid intuitionistically (they use rule "¬¬e").
 - the formal proofs for de Morgan's (2) and (3) on slide 8 and slide 9 are valid intuitionistically (they do not use rule "¬¬e" nor the two rules derived from it, LEM and PBC).
 - but perhaps we did not try hard enough to avoid the rule "¬¬e" in the formal proofs of (1) and (4)???

- For the four de Morgan's laws on slide 2, each with two propositional variables p and q, truth-tables beat natural-deduction proofs – or do they?
- Two of the four de Morgan's laws are intuitionistically valid/tautologies and two are not. The truth tables do not show it, the natural-deduction proofs show it:
 - the formal proofs for de Morgan's (1) and (4) on slide 7 and slide 10 are not valid intuitionistically (they use rule "¬¬e").
 - the formal proofs for de Morgan's (2) and (3) on slide 8 and slide 9 are valid intuitionistically (they do not use rule "¬¬e" nor the two rules derived from it, LEM and PBC).
 - but perhaps we did not try hard enough to avoid the rule "¬¬e" in the formal proofs of (1) and (4)???
 - it can be shown (not easy) that, however hard we may try, there are no intuitionistically valid formal proofs of de Morgan's (1) and (4).

Exercise

1. Write a natural-deduction proof of the following WFF:

$$\varphi_1 \triangleq \neg (p \land q \land r) \rightarrow (\neg p \lor \neg q \lor \neg r)$$

This is a more general version of de Morgan's law (1) on slide 7.

Exercise

1. Write a natural-deduction proof of the following WFF:

$$\varphi_1 \triangleq \neg (p \land q \land r) \rightarrow (\neg p \lor \neg q \lor \neg r)$$

This is a more general version of de Morgan's law (1) on slide 7.

2. Write a natural-deduction proof of the most general de Morgan's law (1):

$$\varphi_2 \triangleq \neg (p_1 \wedge \cdots \wedge p_n) \rightarrow (\neg p_1 \vee \cdots \vee \neg p_n)$$

where $n \ge 2$.

Hint: Use the natural-deduction on slide 7 to guide you.

Exercise

1. Write a natural-deduction proof of the following WFF:

$$\varphi_1 \triangleq \neg (p \land q \land r) \rightarrow (\neg p \lor \neg q \lor \neg r)$$

This is a more general version of de Morgan's law (1) on slide 7.

2. Write a natural-deduction proof of the most general de Morgan's law (1):

$$\varphi_2 \triangleq \neg (p_1 \wedge \cdots \wedge p_n) \rightarrow (\neg p_1 \vee \cdots \vee \neg p_n)$$

where $n \ge 2$.

Hint: Use the natural-deduction on slide 7 to guide you.

 Show there is a natural-deduction proof of the generalized de Morgan's law above φ₂ whose length (the number of lines in the proof) is O(n).

Exercise

1. Write a natural-deduction proof of the following WFF:

$$\varphi_1 \triangleq \neg (p \land q \land r) \rightarrow (\neg p \lor \neg q \lor \neg r)$$

This is a more general version of de Morgan's law (1) on slide 7.

2. Write a natural-deduction proof of the most general de Morgan's law (1):

$$\varphi_2 \triangleq \neg (p_1 \wedge \cdots \wedge p_n) \rightarrow (\neg p_1 \vee \cdots \vee \neg p_n)$$

where $n \ge 2$.

Hint: Use the natural-deduction on slide 7 to guide you.

- Show there is a natural-deduction proof of the generalized de Morgan's law above φ₂ whose length (the number of lines in the proof) is O(n).
- 4. Compare the complexity of a **natural-deduction proof** of φ_2 and the complexity of a **truth-table** verification of φ_2 .