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Origins and background

I semantic tableaux were invented by Evert Beth (1908-1964) in the
mid-1950’s, later adapted and simplified and called analytic tableaux by
Raymond Smullyan (1919-2017) in the 1960’s.

I henceforth, we use exclusively Smullyan’s formulation (only a small part of it) and
say tableaux (singular: tableau, plural: tableaux) instead of “analytic tableaux”.

I if you are interested in making connections with formal proof systems, the tableaux
method can be viewed as minor variation of the so-called Gentzen’s cut-free
sequent calculus (click here for more details).

I the tableaux method has proved to be easily adapted as a procedure to decide the
validity and satisfiability of WFF’s in several formal logics (e.g., modal logics as
developed by Jaakko Hintikka (1929-2015) and Saul Kripke (1940-)) beside
propositional logic and first-order logic.

I this handout deals exclusively with the tableaux method as a decision procedure
for classical propositional logic, though our presentation is easily extended to
closely related intuitionistic propositional logic and first-order logic.

I we present a simple version of the method, perhaps the most basic, as there are
several variations with more complicated notational conventions.
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Informal comments and comparison with natural deduction

I a tableau is a finite tree growing downward (root node at the top), where every
non-leaf node has one or two successor nodes.

I a tableau satisfies the subformula property, i.e., every node in the tree is a
subformula of the formula at the root.

I a tableau can be viewed as a formal deduction turned upside-down,
e.g., whereas in a natural-deduction proof we start from the premises at the top
and conclude with the full WFF at the bottom, in a tableau we start from the full
WFF at the top and decompose it into its subformulas as we proceed downward.

I a tableau requires less guess-work, less search for the next rule to apply, and less
creativity than a natural-deduction proof (to prove the validity of the same WFF),
i.e., the former (a tableau) is more mechanical than the latter (a natural deduction)
and more easily implemented as an algorithm.

(the preceding comments in support of the tableaux method apply again when we
compare it to other formal proof systems beside natural deduction, e.g., any of
the Hilbert-style systems.)
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expansion rules of the tableaux method
I There are several versions of the tableaux method for classical propositional

logic, and each is easily extended to classical first-order logic (in a later handout).

I Differences between these versions are mostly minor syntactic (which may
nevertheless have an impact, good or bad, on their computer implementations).

I One important version omitted here (for lack of time) uses signed expansion
rules, i.e., rules where antecedents and conclusions are signed with T or F.

I Here, we present what is arguably the simplest version of the tableaux method for
classical PL, which involves seven (unsigned) expansion rules:

ϕ ∧ ψ
ϕ

¬(ϕ ∧ ψ)

¬ϕ
∣∣ ¬ψ ϕ ∨ ψ

ϕ
∣∣ ψ ¬(ϕ ∨ ψ)

¬ϕ
ψ ¬ψ

ϕ→ ψ

¬ϕ
∣∣ ψ ¬(ϕ→ ψ)

ϕ

¬¬ϕ
ϕ

¬ψ

I We illustrate the application of these rules on a few examples before we define
tableaux method in full generality.

I (If you want to see some of the other versions of the tableaux method,
click here and consult some of the references mentioned therein.)
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examples of the tableaux method
We can apply the tableaux method to a single WFF or to a finite set

of WFF’s. Here, we apply it to the set Γ = {¬p, (p ∨ ¬q) ∧ q} :

{¬p, (p ∨ ¬q) ∧ q}

¬p

(p ∨ ¬q) ∧ q

p ∨ ¬q

q

¬q

X

p

X

There are two paths from the root node (at the top) to the leaf nodes
(at the bottom). Both paths are closed (marked by X), because each
includes a propositional variable and its negation (p along the left
path, q along the right path). We conclude that Γ is unsatisfiable.

EXPANSION RULES

ϕ ∧ ψ
ϕ

ψ

¬(ϕ ∧ ψ)

¬ϕ
∣∣ ¬ψ

ϕ ∨ ψ
ϕ

∣∣ ψ
¬(ϕ ∨ ψ)

¬ϕ
¬ψ

ϕ → ψ

¬ϕ
∣∣ ψ

¬(ϕ → ψ)

ϕ

¬ψ

¬¬ϕ
ϕ
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examples of the tableaux method

We show de Morgan’s law ¬(p ∧ q)→ (¬p ∨ ¬q) is valid (a tau-
tology) by showing its negation is a contradiction (unsatisfiable) :

¬(¬(p ∧ q)→ (¬p ∨ ¬q))

¬(p ∧ q)

¬(¬p ∨ ¬q)

¬¬p

¬¬q

p

q

¬q

X

¬p

X

Compare the tableau above with the natural-deduction proof
(page 7 of Handout 8) and the truth table (page 12 of Handout 8).

EXPANSION RULES
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examples of the tableaux method
We apply the tableaux method to the set Γ = {p ∧ q,¬p ∨ ¬r}:

Γ = {p ∧ q,¬p ∨ ¬r}

p ∧ q

¬p ∨ ¬r

¬r

p

q

¬p

p

q

X

Only the left path is closed, the right path is open. All the rules
have been applied to all the WFF’s along the same path. Hence, the
tableau cannot be closed, which implies the initial set Γ is satisfiable.
From the right path we obtain a Boolean valuation σ satisfying Γ:
σ(p) = T, σ(q) = T, σ(r) = F.
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examples of the tableaux method

I For more examples of how to apply the tableaux method to decide validity or
satisfiability of propositional WFF’s, search the Web.

I Try, for example, the following website: Propositional tableaux, click here .
Consider, in particular, the heuristics that are proposed in that website to improve
performance.
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definitions of analytic tableaux

I A tableau is a finite unordered tree, with root node at the top and leaf nodes at the
bottom, where every node is labelled with a WFF.

I Let Γ = {ϕ1, . . . , ϕn} be a finite set of WFF’s. The tree with a single path:

ϕ1

...

ϕn

is a tableau for Γ.

I If T is a tableau for a set Γ of WFF’s, and T ′ is obtained from T by applying an
expansion rule, then T ′ is a tableau for Γ.

I A path from the root to a leaf in tableau T is a closed path if it includes both a
WFF ψ and its negation ¬ψ. Otherwise the path is said to be an open path.

I A tableau T is a closed tableau if all its paths are closed.

I A tableau proof for a single WFF ϕ is a closed tableau for the singleton {¬ϕ}.
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more definitions of analytic tableaux

I A path π in a tableau is a maximal path if, for every non-atomic WFF ϕ occurring
in π, there is a node of π below ϕ where the expansion rule for ϕ is applied.

I A tableau T is a maximal tableau if every path in T is closed or maximal.

I A tableau T is a strict tableau if, for every WFF ϕ, the expansion rule for ϕ is
applied at most once on every path containing ϕ. But note that the same WFF ϕ in
two distinct paths π1 and π2 can be used independently, i.e., the expansion rule for
ϕ can be used at most once for π1 and at most once for π2.

I In some accounts of the tableaux method elsewhere, you will find the following
definition: A tableau T is a regular tableau if, on no path of T , a WFF appears
more than once. However, for our choice of expansion rules in this handout, this
definition of “regular tableau” is too restrictive.

Exercise: Show that if a tableau T is regular, then T is strict.

Exercise: Define a WFF ϕ for which no closed regular tableau exists, though there
is a closed strict tableau for ϕ. Hint: Consider ϕ = (p ∧ q) ∧ (p ∧ ¬q).
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basic theorems about analytic tableaux

Let Γ be a finite set of propositional WFF’s and ϕ =
∧∧∧

Γ. Recall:

I Γ is unsatisfiable⇔ ϕ is a contradiction,

I ϕ is a contradiction⇔ the last column in the truth-table of ϕ is all F’s,

I in such a case, we write Γ |= ⊥ or, equivalently, ϕ |= ⊥.

Theorem (Refutation Completeness of Tableaux)
For a finite set Γ of propositional WFF’s, if Γ |= ⊥, then there is a closed tableau for Γ.

Theorem (Soundness of Tableaux)
For a finite set Γ of propositional WFF’s, if there is a closed tableau for Γ, then Γ |= ⊥.

I We do not say completeness of tableaux, but refutation completeness of
tableaux, because the tableaux method does not provide a set of rewrite/expansion
rules to confirm a semantic entailment of the form Γ |= ψ unless ψ = ⊥.

I However, refutation completeness is not a fundamental limitation, because:

Γ |= ψ ⇔ Γ ∪ {¬ψ} is unsatisfiable ⇔ (
∧∧∧

Γ) ∧ ¬ψ is a contradiction.

Hence, tableaux can be used to establish semantic entailment Γ |= ψ in general.
(For a proof of these equivalences, see Lemma 6 in Compactness of Propositional and First-Order Logic – click here .)
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basic theorems about analytic tableaux

Theorem
For a finite set Γ of propositional WFF’s:

I Γ is satisfiable iff there is a maximal tableau for Γ with an open path.

I Γ is satisfiable iff there exists no closed strict tableau for Γ.

Corollary
To decide whether a WFF ϕ is valid/a tautology, it suffices to construct a strict maximal
closed tableau for {¬ϕ}.

Exercise As a formal proof system for classical propositional logic, prove the following:

1. refutation-completeness of the tableaux method,

2. soundness of the tableaux method.

Hint: These are easy!

Exercise Let T be a maximal or closed tableau for a finite set Γ of WFF’s. Show that if T
is strict, then T is necessarily finite.

Hint: If T is a finitely branching tree and every path in T is finite, then T is finite.
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tableaux vs. natural-deduction proofs vs. truth-tables
(Continuation of the discussion in the second half of Handout 08.)

Exercise

1. Use the tableaux method to show the validity of the following more general
version of de Morgan’s law (1):

ϕ1 , ¬(p ∧ q ∧ r) → (¬p ∨ ¬q ∨ ¬r)

Hint: Use the tableau on slide 10 as a guide.

2. Use the tableaux method to show the validity of de Morgan’s law (1) in general:

ϕ2 , ¬(p1 ∧ · · · ∧ pn) → (¬p1 ∨ · · · ∨ ¬pn)

where n > 2.

3. Compute the precise size of the tableau, in Part 2 above, as a function of n. Add
up the total number of symbols appearing in the tableau (without including all
matching parentheses).

4. Compare the complexity of the tableau proof for ϕ2 in Part 2 above with the
complexity of the natural-deduction proof of ϕ2 and that of the truth-table
verification of ϕ2. For the latter two procedures, consult Handout 08.
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tableaux vs. natural-deduction proofs vs. truth-tables

The preceding exercise shows that to prove the validity of some propositional WFF’s,
such as the general de Morgan’s law (1), the tableau method is a clear winner.
However, it cannot be the winner to prove all valid propositional WFF’s (Why?).

Exercise

1. We compare tableaux and truth-tables relative to the same initial WFF ϕ. The
complexity of one primarily depends on (a) the number of occurrences of logical
connectives in ϕ, whereas the complexity of the other primarily depends on (b) the
number of distinct propositional variables in ϕ. Which method depends on (a) and
which on (b)? Explain carefully.

2. Let X = {x1, . . . , xk} be a set of k > 1 variables. We define 2k distinct WFF’s
ϕ1, . . . , ϕ2k where each ϕj is a disjunction containing xi or ¬xi for every 1 6 i 6 k.
The conjunction Ψ of these WFF’s, i.e., Ψ =

∧∧∧
{ϕ1, . . . , ϕ2k}, is not satisfiable.

Give a precise argument for each of the following:

2.1 A closed tableau for Ψ contains at least k! distinct paths.
2.2 A truth-table analysis of Ψ can be carried out in O(k2 · 22k) steps.

Hint: Ψ contains O(k · 2k) occurrences of variables and operators.
2.3 Truth-tables are more efficient than tableaux on WFF’s such as Ψ (an

instance of a conjunctive normal form). Hint: k! >>> k2 · 22k.
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