CS 512, Spring 2017, Handout 10 Propositional Logic:

> Conjunctive Normal Forms, Disjunctive Normal Forms, Horn Formulas, and other special forms

> > Assaf Kfoury

5 February 2017

Assaf Kfoury, CS 512, Spring 2017, Handout 10

conjunctive normal form & disjunctive normal form

conjunctive normal form & disjunctive normal form

CNF

L ::= p	$\neg p$
D ::= L	$L \lor D$
C ::= D	$D \wedge C$

literal

- disjuntion of literals
- conjunction of disjunctions

conjunctive normal form & disjunctive normal form

CNF

$L ::= p \mid \neg p$	literal
$D ::= L \mid L \lor D$	disjuntion of literals
$C ::= D \mid D \land C$	conjunction of disjunctions

DNF

$$L ::= p \mid \neg p$$
literal $C ::= L \mid L \land C$ conjunction of literals $D ::= C \mid C \lor D$ disjunction of conjunctions

A disjunction of literals $L_1 \vee \cdots \vee L_m$ is **valid** (equivalently, is a **tautology**) iff there are $1 \leq i, j \leq m$ with $i \neq j$ such that L_i is $\neg L_j$.

- A disjunction of literals $L_1 \vee \cdots \vee L_m$ is **valid** (equivalently, is a **tautology**) iff there are $1 \leq i, j \leq m$ with $i \neq j$ such that L_i is $\neg L_j$.
- A conjunction of disjunctions D₁ ∧ · · · ∧ D_n is valid (equivalently, is a tautology) iff for every 1 ≤ i ≤ n it is the case that D_i is valid.

- A disjunction of literals $L_1 \vee \cdots \vee L_m$ is **valid** (equivalently, is a **tautology**) iff there are $1 \leq i, j \leq m$ with $i \neq j$ such that L_i is $\neg L_j$.
- A conjunction of disjunctions D₁ ∧ · · · ∧ D_n is valid (equivalently, is a tautology) iff for every 1 ≤ i ≤ n it is the case that D_i is valid.
- CNF allows for a fast and easy syntactic test of validity.

- A disjunction of literals $L_1 \vee \cdots \vee L_m$ is **valid** (equivalently, is a **tautology**) iff there are $1 \leq i, j \leq m$ with $i \neq j$ such that L_i is $\neg L_j$.
- A conjunction of disjunctions D₁ ∧ · · · ∧ D_n is valid (equivalently, is a tautology) iff for every 1 ≤ i ≤ n it is the case that D_i is valid.
- CNF allows for a fast and easy syntactic test of validity.
- Unfortunately, conversion into CNF may lead to exponential blow-up:

 $(x_1 \wedge y_1) \lor (x_2 \wedge y_2) \lor \cdots \lor (x_n \wedge y_n)$ becomes $(x_1 \lor \cdots \lor x_{n-1} \lor x_n) \land (x_1 \lor \cdots \lor x_{n-1} \lor y_n) \land \cdots \land (y_1 \lor \cdots \lor y_{n-1} \lor y_n)$

i.e., the initial WFF of size $\mathcal{O}(n)$ becomes an equivalent WFF of size $\mathcal{O}(2^n)$, because each clause in the latter contains either x_i or y_i for every *i*.

Converting a WFF into an equivalent WFF in CNF, preserving validity, is NP-hard!

(However, converting a WFF into another WFF, not necessarily equivalent, preserving **satisfiability** can be carried out in linear time – more in a later handout.)

• A conjunction of literals $L_1 \land \dots \land L_m$ is **satisfiable** iff $\{L_1, \dots, L_m\}$ does not include both a propositional atom *P* and its negation $\neg P$.

- A conjunction of literals $L_1 \land \cdots \land L_m$ is **satisfiable** iff $\{L_1, \ldots, L_m\}$ does not include both a propositional atom *P* and its negation $\neg P$.
- A disjunction of conjunctions $C_1 \vee \cdots \vee C_n$ is **satisfiable** iff there is some $1 \leq i \leq n$ such that C_i is satisfiable.

- A conjunction of literals $L_1 \land \cdots \land L_m$ is **satisfiable** iff $\{L_1, \ldots, L_m\}$ does not include both a propositional atom *P* and its negation $\neg P$.
- A disjunction of conjunctions $C_1 \vee \cdots \vee C_n$ is **satisfiable** iff there is some $1 \leq i \leq n$ such that C_i is satisfiable.
- > DNF allows for a fast and easy syntactic test of satisfiability.

- A conjunction of literals $L_1 \land \cdots \land L_m$ is **satisfiable** iff $\{L_1, \ldots, L_m\}$ does not include both a propositional atom *P* and its negation $\neg P$.
- A disjunction of conjunctions $C_1 \vee \cdots \vee C_n$ is **satisfiable** iff there is some $1 \leq i \leq n$ such that C_i is satisfiable.
- **DNF** allows for a fast and easy syntactic test of **satisfiability**.
- Unfortunately, conversion into DNF may lead to exponential blow-up:

 $(x_1 \lor y_1) \land (x_2 \lor y_2) \land \dots \land (x_n \lor y_n)$ becomes $(x_1 \land \dots \land x_{n-1} \land x_n) \lor (x_1 \land \dots \land x_{n-1} \land y_n) \lor \dots \lor (y_1 \land \dots \land y_{n-1} \land y_n)$

i.e., the initial WFF of size $\mathcal{O}(n)$ becomes an equivalent WFF of size $\mathcal{O}(2^n)$, because each clause in the latter contains either x_i or y_i for every *i*.

Converting a WFF into an equivalent WFF in DNF, preserving satisfiability, is NP-hard!

further comments on CNF and DNF, summing up:

- propositional WFF's can be partitioned into three disjoint subsets:
 - 1. tautologies, or unfalsifiable WFF's
 - 2. contradictions, or unsatisfiable WFF's
 - 3. WFF's that are both satisfiable and falsifiable
- satisfiability of:
 - CNF is in NP
 - DNF is in P
- tautology of:
 - CNF is in P
 - DNF is in co-NP
- falsifiability of:
 - CNF is in P
 - DNF is in NP

other special forms of propositional WFF's:

One such form is that of the WFF's in negation normal form (NNF): the negation operator (¬) is only applied to variables, and the only logical operators are conjunction (∧) and disjunction (∨).

other special forms of propositional WFF's:

One such form is that of the WFF's in negation normal form (NNF): the negation operator (¬) is only applied to variables, and the only logical operators are conjunction (∧) and disjunction (∨).

More formally:

other special forms of propositional WFF's:

One such form is that of the WFF's in negation normal form (NNF): the negation operator (¬) is only applied to variables, and the only logical operators are conjunction (∧) and disjunction (∨).

More formally:

- Fact: Every WFF in CNF or in DNF is also in NNF, but the converse is not true in general. See next slide for an example.
- Fact: NNF is not a canonical form, in contrast to CNF and DNF.

Example: $x \land (y \lor \neg z)$ and $(x \land y) \lor (x \land \neg z)$ are equivalent and both in **NNF**.

▶ Fact: Every propositional WFF φ can be translated in linear time into an equivalent propositional WFF ψ in NNF such that $|\psi| < (3/2) \cdot |\varphi|$. Proof. Left to you.

example of a WFF in NNF, which is neither in CNF nor in DNF

$$\begin{pmatrix} \left((\neg p \land q) \lor (\neg q \land p) \right) \land \left((r \land s) \lor (\neg s \land \neg r) \right) \end{pmatrix} \\ \lor \quad \left(\left(\left((\neg p \land \neg q) \lor (q \land p) \right) \land \left((r \land \neg s) \lor (s \land \neg r) \right) \right) \right)$$

example of a WFF in NNF, which is neither in CNF nor in DNF

$$\begin{pmatrix} \left((\neg p \land q) \lor (\neg q \land p) \right) \land \left((r \land s) \lor (\neg s \land \neg r) \right) \end{pmatrix} \\ \lor \quad \left(\left(\left((\neg p \land \neg q) \lor (q \land p) \right) \land \left((r \land \neg s) \lor (s \land \neg r) \right) \right) \end{cases}$$

and its parse tree after merging identical leaf nodes, turning it into a more compact dag:

A propositional WFF φ is a **decomposable negation normal form (DNNF)** if it is a **NNF** satisfying the **decomposability property**:

for every conjunction $\psi = \psi_1 \wedge \cdots \wedge \psi_n$ which is a sub-WFF of φ , no propositional variable/atom is shared by any two distinct conjuncts of ψ :

 $\operatorname{Var}(\psi_i) \cap \operatorname{Var}(\psi_j) = \varnothing$ for every $i \neq j$

A propositional WFF φ is a **decomposable negation normal form (DNNF)** if it is a **NNF** satisfying the **decomposability property**:

for every conjunction $\psi = \psi_1 \wedge \cdots \wedge \psi_n$ which is a sub-WFF of φ , no propositional variable/atom is shared by any two distinct conjuncts of ψ :

 $\operatorname{Var}(\psi_i) \cap \operatorname{Var}(\psi_j) = \emptyset$ for every $i \neq j$

Example: The NNF shown on page 19 is in fact a DNNF.

A propositional WFF φ is a **decomposable negation normal form (DNNF)** if it is a **NNF** satisfying the **decomposability property**:

for every conjunction $\psi = \psi_1 \wedge \cdots \wedge \psi_n$ which is a sub-WFF of φ , no propositional variable/atom is shared by any two distinct conjuncts of ψ :

 $\operatorname{Var}(\psi_i) \cap \operatorname{Var}(\psi_j) = \emptyset$ for every $i \neq j$

Example: The NNF shown on page 19 is in fact a DNNF.

Fact: Satisfiability of WFF in DNNF is decidable in linear time.

an important restricted class: Horn formulas

an important restricted class: Horn formulas

an important restricted class: Horn formulas

$$P ::= \bot | \top | p$$

$$A ::= P | P \land A$$

$$C ::= A \rightarrow P$$
Horn clause
$$H ::= C | C \land H$$
Horn formula

Fact: Satisfiability of Horn clauses is decidable in linear time.

Proof: To see this, rewrite a Horn clause into an equivalent disjunction of literals: $L_1 \wedge \cdots \wedge L_n \rightarrow L \equiv \neg L_1 \vee \cdots \vee \neg L_n \vee L.$

Fact: Satisfiability of Horn formulas is decidable in linear time.

Exercise Search the Web to identify one or two applications, or areas of computer science, where each of the following forms are encountered:

- 1. Propositional WFF's in NNF.
- 2. Propositional WFF's in DNNF.
- 3. Propositional WFF's that are Horn formulas.