# CS 512, Spring 2017, Handout 10 Propositional Logic: 

# Conjunctive Normal Forms, Disjunctive Normal Forms, Horn Formulas, and other special forms 

Assaf Kfoury

5 February 2017

## conjunctive normal form \& disjunctive normal form

## conjunctive normal form \& disjunctive normal form

## CNF

$L::=p \mid \neg p \quad$ literal
$D::=L \mid L \vee D \quad$ disjuntion of literals
$C::=D \mid D \wedge C \quad$ conjunction of disjunctions

## conjunctive normal form \& disjunctive normal form

## CNF

$L::=p \mid \neg p \quad$ literal
$D::=L \mid L \vee D \quad$ disjuntion of literals
$C::=D \mid D \wedge C \quad$ conjunction of disjunctions

## DNF

$L::=p \mid \neg p \quad$ literal
$C::=L \mid L \wedge C \quad$ conjunction of literals
$D::=C \mid C \vee D \quad$ disjunction of conjunctions

## Why CNF?

## Why CNF?

- A disjunction of literals $L_{1} \vee \cdots \vee L_{m}$ is valid (equivalently, is a tautology) iff there are $1 \leqslant i, j \leqslant m$ with $i \neq j$ such that $L_{i}$ is $\neg L_{j}$.


## Why CNF?

- A disjunction of literals $L_{1} \vee \cdots \vee L_{m}$ is valid (equivalently, is a tautology) iff there are $1 \leqslant i, j \leqslant m$ with $i \neq j$ such that $L_{i}$ is $\neg L_{j}$.
- A conjunction of disjunctions $D_{1} \wedge \cdots \wedge D_{n}$ is valid (equivalently, is a tautology) iff for every $1 \leqslant i \leqslant n$ it is the case that $D_{i}$ is valid.


## Why CNF?

- A disjunction of literals $L_{1} \vee \cdots \vee L_{m}$ is valid (equivalently, is a tautology) iff there are $1 \leqslant i, j \leqslant m$ with $i \neq j$ such that $L_{i}$ is $\neg L_{j}$.
- A conjunction of disjunctions $D_{1} \wedge \cdots \wedge D_{n}$ is valid (equivalently, is a tautology) iff for every $1 \leqslant i \leqslant n$ it is the case that $D_{i}$ is valid.
- CNF allows for a fast and easy syntactic test of validity.


## Why CNF?

- A disjunction of literals $L_{1} \vee \cdots \vee L_{m}$ is valid (equivalently, is a tautology) iff there are $1 \leqslant i, j \leqslant m$ with $i \neq j$ such that $L_{i}$ is $\neg L_{j}$.
- A conjunction of disjunctions $D_{1} \wedge \cdots \wedge D_{n}$ is valid (equivalently, is a tautology) iff for every $1 \leqslant i \leqslant n$ it is the case that $D_{i}$ is valid.
- CNF allows for a fast and easy syntactic test of validity.
- Unfortunately, conversion into CNF may lead to exponential blow-up:

$$
\begin{aligned}
& \left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee \cdots \vee\left(x_{n} \wedge y_{n}\right) \text { becomes } \\
& \left(x_{1} \vee \cdots \vee x_{n-1} \vee x_{n}\right) \wedge\left(x_{1} \vee \cdots \vee x_{n-1} \vee y_{n}\right) \wedge \cdots \wedge\left(y_{1} \vee \cdots \vee y_{n-1} \vee y_{n}\right)
\end{aligned}
$$

i.e., the initial WFF of size $\mathcal{O}(n)$ becomes an equivalent WFF of size $\mathcal{O}\left(2^{n}\right)$, because each clause in the latter contains either $x_{i}$ or $y_{i}$ for every $i$.

- Converting a WFF into an equivalent WFF in CNF, preserving validity, is NP-hard!
(However, converting a WFF into another WFF, not necessarily equivalent, preserving satisfiability can be carried out in linear time - more in a later handout.)


## Why DNF?

## Why DNF?

- A conjunction of literals $L_{1} \wedge \cdots \wedge L_{m}$ is satisfiable iff $\left\{L_{1}, \ldots, L_{m}\right\}$ does not include both a propositional atom $P$ and its negation $\neg P$.


## Why DNF?

- A conjunction of literals $L_{1} \wedge \cdots \wedge L_{m}$ is satisfiable iff $\left\{L_{1}, \ldots, L_{m}\right\}$ does not include both a propositional atom $P$ and its negation $\neg P$.
- A disjunction of conjunctions $C_{1} \vee \cdots \vee C_{n}$ is satisfiable iff there is some $1 \leqslant i \leqslant n$ such that $C_{i}$ is satisfiable.


## Why DNF?

- A conjunction of literals $L_{1} \wedge \cdots \wedge L_{m}$ is satisfiable iff $\left\{L_{1}, \ldots, L_{m}\right\}$ does not include both a propositional atom $P$ and its negation $\neg P$.
- A disjunction of conjunctions $C_{1} \vee \cdots \vee C_{n}$ is satisfiable iff there is some $1 \leqslant i \leqslant n$ such that $C_{i}$ is satisfiable.
- DNF allows for a fast and easy syntactic test of satisfiability.


## Why DNF?

- A conjunction of literals $L_{1} \wedge \cdots \wedge L_{m}$ is satisfiable iff $\left\{L_{1}, \ldots, L_{m}\right\}$ does not include both a propositional atom $P$ and its negation $\neg P$.
- A disjunction of conjunctions $C_{1} \vee \cdots \vee C_{n}$ is satisfiable iff there is some $1 \leqslant i \leqslant n$ such that $C_{i}$ is satisfiable.
- DNF allows for a fast and easy syntactic test of satisfiability.
- Unfortunately, conversion into DNF may lead to exponential blow-up:

$$
\begin{aligned}
& \left(x_{1} \vee y_{1}\right) \wedge\left(x_{2} \vee y_{2}\right) \wedge \cdots \wedge\left(x_{n} \vee y_{n}\right) \quad \text { becomes } \\
& \left(x_{1} \wedge \cdots \wedge x_{n-1} \wedge x_{n}\right) \vee\left(x_{1} \wedge \cdots \wedge x_{n-1} \wedge y_{n}\right) \vee \cdots \vee\left(y_{1} \wedge \cdots \wedge y_{n-1} \wedge y_{n}\right)
\end{aligned}
$$

i.e., the initial WFF of size $\mathcal{O}(n)$ becomes an equivalent WFF of size $\mathcal{O}\left(2^{n}\right)$, because each clause in the latter contains either $x_{i}$ or $y_{i}$ for every $i$.

- Converting a WFF into an equivalent WFF in DNF, preserving satisfiability, is NP-hard!


## further comments on CNF and DNF, summing up:

- propositional WFF's can be partitioned into three disjoint subsets:

1. tautologies, or unfalsifiable WFF's
2. contradictions, or unsatisfiable WFF's
3. WFF's that are both satisfiable and falsifiable

- satisfiability of:
- CNF is in NP
- DNF is in P
- tautology of:
- CNF is in $P$
- DNF is in co-NP
- falsifiability of:
- CNF is in P
- DNF is in NP


## other special forms of propositional WFF's:

- One such form is that of the WFF's in negation normal form (NNF): the negation operator $(\neg)$ is only applied to variables, and the only logical operators are conjunction $(\wedge)$ and disjunction $(\vee)$.


## other special forms of propositional WFF's:

- One such form is that of the WFF's in negation normal form (NNF): the negation operator $(\neg)$ is only applied to variables, and the only logical operators are conjunction $(\wedge)$ and disjunction $(\vee)$.
- More formally:

$$
\begin{array}{rl|l}
L::=p & \neg p \\
\varphi::=L & \varphi \wedge \psi & \mid \varphi \vee \psi
\end{array}
$$

## other special forms of propositional WFF's:

- One such form is that of the WFF's in negation normal form (NNF): the negation operator $(\neg)$ is only applied to variables, and the only logical operators are conjunction $(\wedge)$ and disjunction $(\vee)$.
- More formally:

$$
\begin{aligned}
L::=p & \neg p \\
\varphi::=L & \varphi \wedge \psi \mid \quad \varphi \vee \psi
\end{aligned}
$$

- Fact: Every WFF in CNF or in DNF is also in NNF, but the converse is not true in general. See next slide for an example.
- Fact: NNF is not a canonical form, in contrast to CNF and DNF.

Example: $x \wedge(y \vee \neg z)$ and $(x \wedge y) \vee(x \wedge \neg z)$ are equivalent and both in NNF.

- Fact: Every propositional WFF $\varphi$ can be translated in linear time into an equivalent propositional WFF $\psi$ in NNF such that $|\psi|<(3 / 2) \cdot|\varphi|$.
Proof. Left to you.


## example of a WFF in NNF, which is neither in CNF nor in DNF

$$
\begin{aligned}
& (((\neg p \wedge q) \vee(\neg q \wedge p)) \wedge((r \wedge s) \vee(\neg s \wedge \neg r))) \\
& \vee(((\neg p \wedge \neg q) \vee(q \wedge p)) \wedge((r \wedge \neg s) \vee(s \wedge \neg r)))
\end{aligned}
$$

$$
(((\neg p \wedge q) \vee(\neg q \wedge p)) \wedge((r \wedge s) \vee(\neg s \wedge \neg r)))
$$

$$
\vee \quad(((\neg p \wedge \neg q) \vee(q \wedge p)) \wedge((r \wedge \neg s) \vee(s \wedge \neg r)))
$$

and its parse tree after merging identical leaf nodes, turning it into a more compact dag:


## another special form of propositional WFFs: Decomposable Negation Normal Form (DNNF)

## another special form of propositional WFFs: Decomposable Negation Normal Form (DNNF)

A propositional WFF $\varphi$ is a decomposable negation normal form (DNNF) if it is a NNF satisfying the decomposability property:
for every conjunction $\psi=\psi_{1} \wedge \cdots \wedge \psi_{n}$ which is a sub-WFF of $\varphi$, no propositional variable/atom is shared by any two distinct conjuncts of $\psi$ :

$$
\operatorname{Var}\left(\psi_{i}\right) \cap \operatorname{Var}\left(\psi_{j}\right)=\varnothing \quad \text { for every } \quad i \neq j
$$

## another special form of propositional WFFs: Decomposable Negation Normal Form (DNNF)

A propositional WFF $\varphi$ is a decomposable negation normal form (DNNF) if it is a NNF satisfying the decomposability property:
for every conjunction $\psi=\psi_{1} \wedge \cdots \wedge \psi_{n}$ which is a sub-WFF of $\varphi$, no propositional variable/atom is shared by any two distinct conjuncts of $\psi$ :

$$
\operatorname{Var}\left(\psi_{i}\right) \cap \operatorname{Var}\left(\psi_{j}\right)=\varnothing \quad \text { for every } \quad i \neq j
$$

Example: The NNF shown on page 19 is in fact a DNNF.

## another special form of propositional WFFs: Decomposable Negation Normal Form (DNNF)

A propositional WFF $\varphi$ is a decomposable negation normal form (DNNF) if it is a NNF satisfying the decomposability property:
for every conjunction $\psi=\psi_{1} \wedge \cdots \wedge \psi_{n}$ which is a sub-WFF of $\varphi$, no propositional variable/atom is shared by any two distinct conjuncts of $\psi$ :

$$
\operatorname{Var}\left(\psi_{i}\right) \cap \operatorname{Var}\left(\psi_{j}\right)=\varnothing \quad \text { for every } \quad i \neq j
$$

Example: The NNF shown on page 19 is in fact a DNNF.

Fact: Satisfiability of WFF in DNNF is decidable in linear time.

## an important restricted class: Horn formulas

## an important restricted class: Horn formulas

$$
\begin{array}{l|ll}
P::=\perp & \top \quad \mid l l \\
A::=P & P \wedge A & \\
C::=A \rightarrow P & & \\
H::=C & C \wedge H & \text { Horn clause } \\
H & & \text { Horn formula }
\end{array}
$$

## an important restricted class: Horn formulas

$$
\begin{array}{l|ll}
P::=\perp & \top & p \\
& \perp & \\
C:=P & P \wedge A & \\
C:=A \rightarrow P & & \text { Horn clause } \\
H:=C & C \wedge H & \\
\text { Horn formula }
\end{array}
$$

Fact: Satisfiability of Horn clauses is decidable in linear time.
Proof: To see this, rewrite a Horn clause into an equivalent disjunction of literals:
$L_{1} \wedge \cdots \wedge L_{n} \rightarrow L \equiv \neg L_{1} \vee \cdots \vee \neg L_{n} \vee L$.

Fact: Satisfiability of Horn formulas is decidable in linear time.

Exercise Search the Web to identify one or two applications, or areas of computer science, where each of the following forms are encountered:

1. Propositional WFF's in NNF.
2. Propositional WFF's in DNNF.
3. Propositional WFF's that are Horn formulas.
