Propositional Logic:
Conjunctive Normal Forms,
Disjunctive Normal Forms,
Horn Formulas,
and other special forms

Assaf Kfoury

5 February 2017
conjunctive normal form & disjunctive normal form
conjunctive normal form & disjunctive normal form

CNF

\[L ::= p \mid \neg p \quad \text{literal} \]
\[D ::= L \mid L \lor D \quad \text{disjunction of literals} \]
\[C ::= D \mid D \land C \quad \text{conjunction of disjunctions} \]
conjunctive normal form & disjunctive normal form

CNF

\[
\begin{align*}
L & ::= p \mid \neg p & \text{literal} \\
D & ::= L \mid L \lor D & \text{disjunction of literals} \\
C & ::= D \mid D \land C & \text{conjunction of disjunctions}
\end{align*}
\]

DNF

\[
\begin{align*}
L & ::= p \mid \neg p & \text{literal} \\
C & ::= L \mid L \land C & \text{conjunction of literals} \\
D & ::= C \mid C \lor D & \text{disjunction of conjunctions}
\end{align*}
\]
Why CNF?

A disjunction of literals $L_1 \lor \cdots \lor L_m$ is valid (equivalently, is a tautology) iff there are $1 \leq i, j \leq m$ with $i \neq j$ such that L_i is $\neg L_j$.

A conjunction of disjunctions $D_1 \land \cdots \land D_n$ is valid (equivalently, is a tautology) iff for every $1 \leq i \leq n$ it is the case that D_i is valid.

CNF allows for a fast and easy syntactic test of validity.

Unfortunately, conversion into CNF may lead to exponential blow-up:

$$(x_1 \land y_1) \lor (x_2 \land y_2) \lor \cdots \lor (x_n \land y_n)$$

becomes

$$(x_1 \lor \cdots \lor x_{n-1} \lor x_n) \land (x_1 \lor \cdots \lor x_{n-1} \lor y_n) \land \cdots \land (y_1 \lor \cdots \lor y_{n-1} \lor y_n)$$

i.e., the initial WFF of size $O(n)$ becomes an equivalent WFF of size $O(2^n)$, because each clause in the latter contains either x_i or y_i for every i.

Converting a WFF into an equivalent WFF in CNF, preserving validity, is NP-hard!

(However, converting a WFF into another WFF, not necessarily equivalent, preserving satisfiability can be carried out in linear time – more in a later handout.)
Why CNF?

▶ A disjunction of literals $L_1 \lor \cdots \lor L_m$ is valid (equivalently, is a tautology) iff there are $1 \leq i, j \leq m$ with $i \neq j$ such that L_i is $\neg L_j$.
Why CNF?

- A disjunction of literals \(L_1 \lor \cdots \lor L_m \) is valid (equivalently, is a tautology) iff there are \(1 \leq i, j \leq m \) with \(i \neq j \) such that \(L_i \) is \(\neg L_j \).

- A conjunction of disjunctions \(D_1 \land \cdots \land D_n \) is valid (equivalently, is a tautology) iff for every \(1 \leq i \leq n \) it is the case that \(D_i \) is valid.

\[(x_1 \land x_2 \land \cdots \land x_n) \lor (y_1 \land y_2 \land \cdots \land y_n) \]

which becomes

\[(x_1 \lor \cdots \lor x_{n-1} \lor x_n) \land (x_1 \lor \cdots \lor x_{n-1} \lor y_n) \land \cdots \land (y_1 \lor \cdots \lor y_{n-1} \lor y_n) \]

\[\text{i.e., the initial WFF of size } O(n) \text{ becomes an equivalent WFF of size } O(2^n), \text{ because each clause in the latter contains either } x_i \text{ or } y_i \text{ for every } i. \]

\[\text{Converting a WFF into an equivalent WFF in CNF, preserving validity, is NP-hard!} \]

(However, converting a WFF into another WFF, not necessarily equivalent, preserving satisfiability can be carried out in linear time – more in a later handout.)
Why CNF?

- A disjunction of literals $L_1 \lor \cdots \lor L_m$ is valid (equivalently, is a tautology) iff there are $1 \leq i, j \leq m$ with $i \neq j$ such that L_i is $\neg L_j$.

- A conjunction of disjunctions $D_1 \land \cdots \land D_n$ is valid (equivalently, is a tautology) iff for every $1 \leq i \leq n$ it is the case that D_i is valid.

- CNF allows for a fast and easy syntactic test of validity.

Unfortunately, conversion into CNF may lead to exponential blow-up:

\[(x_1 \land y_1) \lor (x_2 \land y_2) \lor \cdots \lor (x_n \land y_n)\]

becomes

\[(x_1 \lor \cdots \lor x_n) \land (x_1 \lor \cdots \lor y_n) \land \cdots \land (y_1 \lor \cdots \lor y_n)\]

i.e., the initial WFF of size $O(n)$ becomes an equivalent WFF of size $O(2^n)$, because each clause in the latter contains either x_i or y_i for every i.

Converting a WFF into an equivalent WFF in CNF, preserving validity, is NP-hard!

(However, converting a WFF into another WFF, not necessarily equivalent, preserving satisfiability can be carried out in linear time – more in a later handout.)
Why CNF?

- A disjunction of literals \(L_1 \lor \cdots \lor L_m \) is **valid** (equivalently, is a **tautology**) iff there are \(1 \leq i, j \leq m \) with \(i \neq j \) such that \(L_i \) is \(\neg L_j \).

- A conjunction of disjunctions \(D_1 \land \cdots \land D_n \) is **valid** (equivalently, is a **tautology**) iff for every \(1 \leq i \leq n \) it is the case that \(D_i \) is valid.

- **CNF** allows for a fast and easy syntactic test of **validity**.

- Unfortunately, conversion into **CNF** may lead to exponential blow-up:

\[
(x_1 \land y_1) \lor (x_2 \land y_2) \lor \cdots \lor (x_n \land y_n) \ \text{becomes} \\
(x_1 \lor \cdots \lor x_{n-1} \lor x_n) \land (x_1 \lor \cdots \lor x_{n-1} \lor y_n) \land \cdots \land (y_1 \lor \cdots \lor y_{n-1} \lor y_n)
\]

i.e., the initial WFF of size \(\mathcal{O}(n) \) becomes an equivalent WFF of size \(\mathcal{O}(2^n) \), because each clause in the latter contains either \(x_i \) or \(y_i \) for every \(i \).

- Converting a WFF into an equivalent WFF in **CNF**, preserving **validity**, is NP-hard!

(However, converting a WFF into another WFF, not necessarily equivalent, preserving **satisfiability** can be carried out in linear time – more in a later handout.)
Why DNF?

A conjunction of literals $L_1 \land \cdots \land L_m$ is satisfiable iff \{ L_1, \ldots, L_m \} does not include both a propositional atom P and its negation $\neg P$.

A disjunction of conjunctions $C_1 \lor \cdots \lor C_n$ is satisfiable iff there is some $1 \leq i \leq n$ such that C_i is satisfiable.

DNF allows for a fast and easy syntactic test of satisfiability.

Unfortunately, conversion into DNF may lead to exponential blow-up: $(x_1 \lor y_1) \land (x_2 \lor y_2) \land \cdots \land (x_n \lor y_n)$ becomes $(x_1 \land \cdots \land x_{n-1} \land x_n) \lor (x_1 \land \cdots \land x_{n-1} \land y_n) \lor \cdots \lor (y_1 \land \cdots \land y_{n-1} \land y_n)$, i.e., the initial WFF of size $O(n)$ becomes an equivalent WFF of size $O(2^n)$, because each clause in the latter contains either x_i or y_i for every i.

Converting a WFF into an equivalent WFF in DNF, preserving satisfiability, is NP-hard!
Why DNF?

- A conjunction of literals $L_1 \land \cdots \land L_m$ is \textbf{satisfiable} iff \{L_1, \ldots, L_m\} does not include both a propositional atom P and its negation $\neg P$.

- \textbf{DNF} allows for a fast and easy syntactic test of satisfiability.

- Unfortunately, conversion into \textbf{DNF} may lead to exponential blow-up: $(x_1 \lor y_1) \land (x_2 \lor y_2) \land \cdots \land (x_n \lor y_n)$ becomes $(x_1 \land \cdots \land x_{n-1} \land x_n) \lor (x_1 \land \cdots \land x_{n-1} \land y_n) \lor \cdots \lor (y_1 \land \cdots \land y_{n-1} \land y_n)$, i.e., the initial WFF of size $O(n)$ becomes an equivalent WFF of size $O(2^n)$, because each clause in the latter contains either x_i or y_i for every i.

- Converting a WFF into an equivalent WFF in \textbf{DNF}, preserving satisfiability, is NP-hard!
Why DNF?

- A conjunction of literals $L_1 \land \cdots \land L_m$ is **satisfiable** iff $\{L_1, \ldots, L_m\}$ does not include both a propositional atom P and its negation $\neg P$.

- A disjunction of conjunctions $C_1 \lor \cdots \lor C_n$ is **satisfiable** iff there is some $1 \leq i \leq n$ such that C_i is satisfiable.
Why DNF?

▶ A conjunction of literals $L_1 \land \cdots \land L_m$ is **satisfiable** iff \{\(L_1, \ldots, L_m\)\} does not include both a propositional atom P and its negation $\neg P$.

▶ A disjunction of conjunctions $C_1 \lor \cdots \lor C_n$ is **satisfiable** iff there is some $1 \leq i \leq n$ such that C_i is satisfiable.

▶ **DNF** allows for a fast and easy syntactic test of **satisfiability**.
Why DNF?

- A conjunction of literals \(L_1 \land \cdots \land L_m \) is **satisfiable** iff \(\{ L_1, \ldots, L_m \} \) does not include both a propositional atom \(P \) and its negation \(\neg P \).

- A disjunction of conjunctions \(C_1 \lor \cdots \lor C_n \) is **satisfiable** iff there is some \(1 \leq i \leq n \) such that \(C_i \) is satisfiable.

- **DNF** allows for a fast and easy syntactic test of **satisfiability**.

- Unfortunately, conversion into **DNF** may lead to exponential blow-up:

\[
(x_1 \lor y_1) \land (x_2 \lor y_2) \land \cdots \land (x_n \lor y_n) \text{ becomes } \\
(x_1 \land \cdots \land x_{n-1} \land x_n) \lor (x_1 \land \cdots \land x_{n-1} \land y_n) \lor \cdots \lor (y_1 \land \cdots \land y_{n-1} \land y_n)
\]

i.e., the initial WFF of size \(O(n) \) becomes an equivalent WFF of size \(O(2^n) \), because each clause in the latter contains either \(x_i \) or \(y_i \) for every \(i \).

- Converting a WFF into an equivalent WFF in **DNF**, preserving **satisfiability**, is NP-hard!
further comments on CNF and DNF, summing up:

- propositional WFF’s can be partitioned into three disjoint subsets:
 1. tautologies, or **unfalsifiable** WFF’s
 2. contradictions, or **unsatisfiable** WFF’s
 3. WFF’s that are both **satisfiable** and **falsifiable**

- satisfiability of:
 - **CNF** is in NP
 - **DNF** is in P

- tautology of:
 - **CNF** is in P
 - **DNF** is in co-NP

- falsifiability of:
 - **CNF** is in P
 - **DNF** is in NP
other special forms of propositional WFF’s:

- One such form is that of the WFF’s in **negation normal form (NNF)**: the negation operator (\neg) is only applied to variables, and the only logical operators are conjunction (\wedge) and disjunction (\vee).
other special forms of propositional WFF’s:

▶ One such form is that of the WFF’s in **negation normal form (NNF)**: the negation operator (¬) is only applied to variables, and the only logical operators are conjunction (∧) and disjunction (∨).

▶ More formally:

\[
L ::= \ p \ | \ \neg p \\
\varphi ::= \ L \ | \ \varphi \land \psi \ | \ \varphi \lor \psi
\]

▶ Fact: Every WFF in CNF or in DNF is also in NNF, but the converse is not true in general. See next slide for an example.

▶ Fact: NNF is not a canonical form, in contrast to CNF and DNF.

Example:

\[\begin{align*}
&x \land (y \lor \neg z) \\
&\quad \text{and} \\
&\quad (x \land y) \lor (x \land \neg z)
\end{align*}\]

are equivalent and both in NNF.

▶ Fact: Every propositional WFF \(\varphi \) can be translated in linear time into an equivalent propositional WFF \(\psi \) in NNF such that

\[|\psi| < \left(\frac{3}{2} \right) \cdot |\varphi|\]

Proof. Left to you.
other special forms of propositional WFF’s:

▶ One such form is that of the WFF’s in **negation normal form (NNF)**: the negation operator (\neg) is only applied to variables, and the only logical operators are conjunction (\land) and disjunction (\lor).

▶ More formally:

\[
L ::= p \mid \neg p \\
\varphi ::= L \mid \varphi \land \psi \mid \varphi \lor \psi
\]

▶ **Fact**: Every WFF in **CNF** or in **DNF** is also in **NNF**, but the converse is not true in general. See next slide for an example.

▶ **Fact**: **NNF** is not a canonical form, in contrast to **CNF** and **DNF**.

Example: $x \land (y \lor \neg z)$ and $(x \land y) \lor (x \land \neg z)$ are equivalent and both in **NNF**.

▶ **Fact**: Every propositional WFF φ can be translated in linear time into an equivalent propositional WFF ψ in **NNF** such that $|\psi| < (3/2) \cdot |\varphi|$.

Proof: Left to you.
example of a WFF in **NNF**, which is neither in **CNF** nor in **DNF**

\[
\left((\neg p \land q) \lor (\neg q \land p) \right) \land \left((r \land s) \lor (\neg s \land \neg r) \right)
\]

\[
\lor \left((\neg p \land \neg q) \lor (q \land p) \right) \land \left((r \land \neg s) \lor (s \land \neg r) \right)
\]
example of a WFF in **NNF**, which is neither in **CNF** nor in **DNF**

\[
\left(\left(\neg p \land q \right) \lor \left(\neg q \land p \right) \right) \land \left(\left(r \land s \right) \lor \left(\neg s \land \neg r \right) \right) \\
\lor \left(\left(\neg p \land \neg q \right) \lor \left(q \land p \right) \right) \land \left(\left(r \land \neg s \right) \lor \left(s \land \neg r \right) \right)
\]

and its **parse tree** after merging identical leaf nodes, turning it into a more compact **dag**:
another special form of propositional WFFs:

Decomposable Negation Normal Form (DNNF)
another special form of propositional WFFs:

Decomposable Negation Normal Form (DNNF)

A propositional WFF φ is a **decomposable negation normal form (DNNF)** if it is a NNF satisfying the **decomposability property**:

for every conjunction $\psi = \psi_1 \land \cdots \land \psi_n$ which is a sub-WFF of φ, no propositional variable/atom is shared by any two distinct conjuncts of ψ:

$$\text{Var}(\psi_i) \cap \text{Var}(\psi_j) = \emptyset \quad \text{for every} \quad i \neq j$$

Example: The NNF shown on page 19 is in fact a DNNF.

Fact: Satisfiability of WFF in DNNF is decidable in linear time.
another special form of propositional WFFs:
Decomposable Negation Normal Form (DNNF)

A propositional WFF \(\varphi \) is a **decomposable negation normal form (DNNF)** if it is a **NNF** satisfying the **decomposability property**:
for every conjunction \(\psi = \psi_1 \land \cdots \land \psi_n \) which is a sub-WFF of \(\varphi \), no propositional variable/atom is shared by any two distinct conjuncts of \(\psi \):

\[
\text{Var}(\psi_i) \cap \text{Var}(\psi_j) = \emptyset \quad \text{for every} \quad i \neq j
\]

Example: The **NNF** shown on page 19 is in fact a **DNNF**.
another special form of propositional WFFs:

Decomposable Negation Normal Form (DNNF)

A propositional WFF φ is a **decomposable negation normal form (DNNF)** if it is a NNF satisfying the **decomposability property**: for every conjunction $\psi = \psi_1 \land \cdots \land \psi_n$ which is a sub-WFF of φ, no propositional variable/atom is shared by any two distinct conjuncts of ψ:

$$\text{Var}(\psi_i) \cap \text{Var}(\psi_j) = \emptyset \quad \text{for every} \quad i \neq j$$

Example: The NNF shown on page 19 is in fact a DNNF.

Fact: Satisfiability of WFF in DNNF is decidable in linear time.
an important restricted class: *Horn formulas*

\[
P ::= \bot | \top | p
\]

\[
A ::= P \mid P \land A
\]

\[
C ::= A \rightarrow P
\]

Horn clause

\[
H ::= C \mid C \land H
\]

Horn formula

Fact: Satisfiability of Horn clauses is decidable in linear time.

Proof: To see this, rewrite a Horn clause into an equivalent disjunction of literals:

\[
L_1 \land \cdots \land L_n \rightarrow L \equiv \neg L_1 \lor \cdots \lor \neg L_n \lor L.
\]

Fact: Satisfiability of Horn formulas is decidable in linear time.
an important restricted class: *Horn formulas*

\[
P ::= \bot \mid \top \mid p
\]

\[
A ::= P \mid P \land A
\]

\[
C ::= A \rightarrow P \quad \text{Horn clause}
\]

\[
H ::= C \mid C \land H \quad \text{Horn formula}
\]

Fact: Satisfiability of Horn clauses is decidable in linear time.

Proof: To see this, rewrite a Horn clause into an equivalent disjunction of literals:

\[
L_1 \land \cdots \land L_n \rightarrow L \equiv \neg L_1 \lor \cdots \lor \neg L_n \lor L.
\]

Fact: Satisfiability of Horn formulas is decidable in linear time.
an important restricted class: *Horn formulas*

\[P ::= \bot \mid \top \mid p \]
\[A ::= P \mid P \land A \]
\[C ::= A \rightarrow P \quad \text{Horn clause} \]
\[H ::= C \mid C \land H \quad \text{Horn formula} \]

Fact: Satisfiability of Horn clauses is decidable in linear time.

Proof: To see this, rewrite a Horn clause into an equivalent disjunction of literals:

\[L_1 \land \cdots \land L_n \rightarrow L \equiv \neg L_1 \lor \cdots \lor \neg L_n \lor L. \]

Fact: Satisfiability of Horn formulas is decidable in linear time.
Exercise Search the Web to identify one or two applications, or areas of computer science, where each of the following forms are encountered:

1. Propositional WFF’s in **NNF**.
2. Propositional WFF’s in **DNNF**.
3. Propositional WFF’s that are **Horn** formulas.