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conjunctive normal form & disjunctive normal form

CNF

L ::= p | ¬p literal

D ::= L | L ∨ D disjuntion of literals

C ::= D | D ∧ C conjunction of disjunctions

DNF

L ::= p | ¬p literal

C ::= L | L ∧ C conjunction of literals

D ::= C | C ∨ D disjunction of conjunctions
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Why CNF?

I A disjunction of literals L1 ∨ · · · ∨ Lm is valid (equivalently, is a tautology)
iff there are 1 6 i, j 6 m with i 6= j such that Li is ¬Lj.

I A conjunction of disjunctions D1 ∧ · · · ∧ Dn is valid (equivalently, is a
tautology) iff for every 1 6 i 6 n it is the case that Di is valid.

I CNF allows for a fast and easy syntactic test of validity.

I Unfortunately, conversion into CNF may lead to exponential blow-up:

(x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xn ∧ yn) becomes

(x1 ∨ · · · ∨ xn−1 ∨ xn) ∧ (x1 ∨ · · · ∨ xn−1 ∨ yn) ∧ · · · ∧ (y1 ∨ · · · ∨ yn−1 ∨ yn)

i.e., the initial WFF of size O(n) becomes an equivalent WFF of size
O(2n), because each clause in the latter contains either xi or yi for every i.

I Converting a WFF into an equivalent WFF in CNF, preserving validity, is
NP-hard!

(However, converting a WFF into another WFF, not necessarily equivalent,
preserving satisfiability can be carried out in linear time – more in a later
handout.)
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Why DNF?

I A conjunction of literals L1 ∧ · · · ∧ Lm is satisfiable iff {L1, . . . ,Lm} does
not include both a propositional atom P and its negation ¬P.

I A disjunction of conjunctions C1 ∨ · · · ∨ Cn is satisfiable iff there is some
1 6 i 6 n such that Ci is satisfiable.

I DNF allows for a fast and easy syntactic test of satisfiability.

I Unfortunately, conversion into DNF may lead to exponential blow-up:

(x1 ∨ y1) ∧ (x2 ∨ y2) ∧ · · · ∧ (xn ∨ yn) becomes

(x1 ∧ · · · ∧ xn−1 ∧ xn) ∨ (x1 ∧ · · · ∧ xn−1 ∧ yn) ∨ · · · ∨ (y1 ∧ · · · ∧ yn−1 ∧ yn)

i.e., the initial WFF of size O(n) becomes an equivalent WFF of size
O(2n), because each clause in the latter contains either xi or yi for every i.

I Converting a WFF into an equivalent WFF in DNF, preserving
satisfiability, is NP-hard!
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further comments on CNF and DNF, summing up:
I propositional WFF’s can be partitioned into three disjoint subsets:

1. tautologies, or unfalsifiable WFF’s
2. contradictions, or unsatisfiable WFF’s
3. WFF’s that are both satisfiable and falsifiable

I satisfiability of:

I CNF is in NP
I DNF is in P

I tautology of:

I CNF is in P
I DNF is in co-NP

I falsifiability of:

I CNF is in P
I DNF is in NP
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other special forms of propositional WFF’s:
I One such form is that of the WFF’s in negation normal form (NNF): the

negation operator (¬) is only applied to variables, and the only logical
operators are conjunction (∧) and disjunction (∨).

I More formally:

L ::= p | ¬p

ϕ ::= L | ϕ ∧ ψ | ϕ ∨ ψ

I Fact: Every WFF in CNF or in DNF is also in NNF,
but the converse is not true in general. See next slide for an example.

I Fact: NNF is not a canonical form, in contrast to CNF and DNF.

Example: x ∧ (y ∨ ¬z) and (x ∧ y) ∨ (x ∧ ¬z) are equivalent and both in NNF.

I Fact: Every propositional WFF ϕ can be translated in linear time into an
equivalent propositional WFF ψ in NNF such that

∣∣ψ∣∣ < (3/2) ·
∣∣ϕ∣∣.

Proof. Left to you.
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example of a WFF in NNF, which is neither in CNF nor in DNF((
(¬p ∧ q) ∨ (¬q ∧ p)

)
∧
(
(r ∧ s) ∨ (¬s ∧ ¬r)

))
∨

((
(¬p ∧ ¬q) ∨ (q ∧ p)

)
∧
(
(r ∧ ¬s) ∨ (s ∧ ¬r)

))

and its parse tree after merging identical leaf nodes, turning it into a more compact dag:

¬p q ¬q p r ¬s s ¬r

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∨ ∨ ∨ ∨

∧ ∧

∨
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another special form of propositional WFFs:
Decomposable Negation Normal Form (DNNF)

A propositional WFF ϕ is a decomposable negation normal form (DNNF) if it is a NNF
satisfying the decomposability property:

for every conjunction ψ = ψ1 ∧ · · · ∧ ψn which is a sub-WFF of ϕ, no propositional
variable/atom is shared by any two distinct conjuncts of ψ:

Var(ψi) ∩ Var(ψj) = ∅ for every i 6= j

Example: The NNF shown on page 19 is in fact a DNNF.

Fact: Satisfiability of WFF in DNNF is decidable in linear time.
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an important restricted class: Horn formulas

P ::= ⊥ | > | p

A ::= P | P ∧ A

C ::= A→ P Horn clause

H ::= C | C ∧ H Horn formula

Fact: Satisfiability of Horn clauses is decidable in linear time.

Proof: To see this, rewrite a Horn clause into an equivalent disjunction of literals:
L1 ∧ · · · ∧ Ln → L ≡ ¬L1 ∨ · · · ∨ ¬Ln ∨ L.

Fact: Satisfiability of Horn formulas is decidable in linear time.
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Exercise Search the Web to identify one or two applications, or areas of
computer science, where each of the following forms are encountered:

1. Propositional WFF’s in NNF.

2. Propositional WFF’s in DNNF.

3. Propositional WFF’s that are Horn formulas.
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