# CS 512, Spring 2017, Handout 13 

# Quantified Boolean Formulas (QBF's) 

Assaf Kfoury

February 15, 2017

## Syntax of QBF's

- BNF definition of QBF's:

$$
\begin{gathered}
\varphi::=\mathbf{F}|\mathbf{T}| x|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi) \mid \\
(\forall x \varphi) \mid(\exists x \varphi)
\end{gathered}
$$

where $x$ ranges over propositional variables.

[^0]
## Syntax of QBF's

- BNF definition of QBF's:

$$
\begin{aligned}
\varphi::= & \mathbf{F}|\mathbf{T}| x|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi) \mid \\
& (\forall x \varphi) \mid
\end{aligned}
$$

where $x$ ranges over propositional variables. ${ }^{1}$

- free and bound variables:
- a variable $x$ may occur free or bound in a WFF $\varphi$
- if $x$ is bound in $\varphi$, then there are zero or more bound occurrences of $x$ and one or more binding occurrences of $x$ in $\varphi$
- a binding occurrence of $x$ is of the form " $\forall x$ " or " $\exists x$ "
- if a binding occurrence of $x$ occurs as $(\mathbf{Q} x \varphi)$ where $\mathbf{Q} \in\{\forall, \exists\}$, then $\varphi$ is the scope of the binding occurrence

[^1]
## Syntax of QBF's

- scopes of two binding occurrences " $\mathbf{Q} x$ " and " $\mathbf{Q}^{\prime} x^{\prime \prime}$ " may be disjoint: $\cdots(\mathbf{Q} x \underbrace{\cdots \cdots}) \cdots(\mathbf{Q}^{\prime} x^{\prime} \underbrace{\cdots \cdots}) \cdots$

but cannot overlap


## Syntax of QBF's

- scopes of two binding occurrences " $\mathbf{Q} x$ " and " $\mathbf{Q}^{\prime} x^{\prime \prime}$ " may be disjoint: $\cdots(\mathbf{Q} x \underbrace{\cdots \cdots}) \cdots(\mathbf{Q}^{\prime} x^{\prime} \underbrace{\cdots \cdots}) \cdots$

but cannot overlap
- We define a function FV ( ) which collects all the variables occurring free in a WFF. Formally:

$$
\mathrm{FV}(\varphi)= \begin{cases}\varnothing & \text { if } \varphi=\mathbf{F} \text { or } \mathbf{T} \\ \{x\} & \text { if } \varphi=x \\ \mathrm{FV}\left(\varphi^{\prime}\right) & \text { if } \varphi=\neg \varphi^{\prime} \\ \mathrm{FV}\left(\varphi_{1}\right) \cup \mathrm{FV}\left(\varphi_{2}\right) & \text { if } \varphi=\left(\varphi_{1} \star \varphi_{2}\right) \text { and } \star \in\{\wedge, \vee, \rightarrow\} \\ \mathrm{FV}\left(\varphi^{\prime}\right)-\{x\} & \text { if } \varphi=\left(\mathbf{Q} x \varphi^{\prime}\right) \text { and } \mathbf{Q} \in\{\forall, \exists\}\end{cases}
$$

Note: If $x$ has a bound occurrence in $\varphi$, it does not follow that $x \notin \mathrm{FV}(\varphi)$.

## Syntax of QBF's

- $\varphi$ is closed iff $\mathrm{FV}(\varphi)=\varnothing$


## Syntax of QBF's

- $\varphi$ is closed iff $\mathrm{FV}(\varphi)=\varnothing$
- is the WFF $\varphi$ of the form:

$$
\varphi=\cdots\left(\mathbf{Q}_{1} x(\cdots x \cdots)\right) \cdots\left(\mathbf{Q}_{2} x(\cdots x \cdots)\right) \cdots
$$

where $\mathbf{Q}_{1}, \mathbf{Q}_{2} \in\{\forall, \exists\}$, equivalent to:

$$
\varphi^{\prime}=\cdots\left(\mathbf{Q}_{1} x(\cdots x \cdots)\right) \cdots\left(\mathbf{Q}_{2} \underset{\uparrow}{x^{\prime}}\left(\cdots{\underset{\uparrow}{x}}_{x^{\prime}} \cdots\right)\right) \cdots ? ?
$$

## Syntax of QBF's

- $\varphi$ is closed iff $\mathrm{FV}(\varphi)=\varnothing$
- is the WFF $\varphi$ of the form:

$$
\varphi=\quad \cdots\left(\mathbf{Q}_{1} x(\cdots x \cdots)\right) \cdots\left(\mathbf{Q}_{2} x(\cdots x \cdots)\right) \cdots
$$

where $\mathbf{Q}_{1}, \mathbf{Q}_{2} \in\{\forall, \exists\}$, equivalent to:

$$
\varphi^{\prime}=\cdots\left(\mathbf{Q}_{1} x(\cdots x \cdots)\right) \cdots\left(\mathbf{Q}_{2} \underset{\uparrow}{x^{\prime}}\left(\cdots{\underset{\uparrow}{x}}_{x^{\prime}} \cdots\right)\right) \cdots ? ?
$$

- YES,$\varphi$ and $\varphi^{\prime}$ are equivalent

Question: What are the advantages of $\varphi^{\prime}$ over $\varphi$ ?
Question: Can you write a procedure to transform $\varphi$ into $\varphi^{\prime}$ ?

## Syntax of QBF's

- Examples of QBF's:

1. a closed QBF (all occurrences of prop variables are bound): ${ }^{2}$

$$
\varphi_{1} \triangleq \forall x .(x \vee \exists y .(y \vee \neg x))
$$

2. an open QBF (some occurrences of propositional variables are free):

$$
\varphi_{2} \triangleq\left(\varphi_{1}\right) \wedge(x \rightarrow y)=\varphi_{1}^{\prime} \wedge(x \rightarrow y)
$$

$\varphi_{1}^{\prime}$ is $\varphi_{1}$ after renaming $x$ and $y$ to $x^{\prime}$ and $y^{\prime}$ (what is good about this renaming??)

[^2]
## Syntax of QBF's

renaming binding occurrences " $\mathbf{Q}_{1} x$ " and " $\mathbf{Q}_{2} x$ " in disjoint scopes


## Syntax of QBF's

renaming binding occurrences " $\mathbf{Q}_{1} x$ " and " $\mathbf{Q}_{2} x$ " in nested scopes


## substitution examples in <br> $$
\varphi=(\forall x(\neg x \wedge(x \rightarrow y))) \rightarrow(\neg \neg x \vee(x \rightarrow y))
$$

## substitution examples in <br> $$
\varphi=(\forall x(\neg x \wedge(x \rightarrow y))) \rightarrow(\neg \neg x \vee(x \rightarrow y))
$$

substitute $\neg z$ for $y$ in $\varphi: \quad \varphi[(\neg z) / y] \quad$ also written $\varphi[y /(\neg z)]$ and $\varphi[y:=\neg z]$

## substitution examples in

$\varphi=(\forall x(\neg x \wedge(x \rightarrow y))) \rightarrow(\neg \neg x \vee(x \rightarrow y))$
substitute $\neg z$ for $y$ in $\varphi: \quad \varphi[(\neg z) / y] \quad$ also written $\varphi[y /(\neg z)]$ and $\varphi[y:=\neg z]$


## substitution examples in

$\varphi=(\forall x(\neg x \wedge(x \rightarrow y))) \rightarrow(\neg \neg x \vee(x \rightarrow y))$
substitute $\neg z$ for $y$ in $\varphi: \quad \varphi[(\neg z) / y] \quad$ also written $\varphi[y /(\neg z)]$ and $\varphi[y:=\neg z]$


## substitution examples in <br> $$
\varphi=(\forall x(\neg x \wedge(x \rightarrow y))) \rightarrow(\neg \neg x \vee(x \rightarrow y))
$$

## substitution examples in <br> $$
\varphi=(\forall x(\neg x \wedge(x \rightarrow y))) \rightarrow(\neg \neg x \vee(x \rightarrow y))
$$

substitute $\neg z$ for $x$ in $\varphi: \quad \varphi[(\neg z) / x]$

## substitution examples in <br> $\varphi=(\forall x(\neg x \wedge(x \rightarrow y))) \rightarrow(\neg \neg x \vee(x \rightarrow y))$

substitute $\neg z$ for $x$ in $\varphi: \quad \varphi[(\neg z) / x]$


## substitution examples in <br> $\varphi=(\forall x(\neg x \wedge(x \rightarrow y))) \rightarrow(\neg \neg x \vee(x \rightarrow y))$

substitute $\neg z$ for $x$ in $\varphi: \quad \varphi[(\neg z) / x]$


## substitution examples in <br> $$
\varphi=(\forall x(\neg x \wedge(x \rightarrow y))) \rightarrow(\neg \neg x \vee(x \rightarrow y))
$$

## substitution examples in $\varphi=(\forall x(\neg x \wedge(x \rightarrow y))) \rightarrow(\neg \neg x \vee(x \rightarrow y))$

substitute $\neg \boldsymbol{x}$ for $y$ in $\varphi$ : $\quad \varphi[(\neg x) / y]$

## substitution examples in <br> $\varphi=(\forall x(\neg x \wedge(x \rightarrow y))) \rightarrow(\neg \neg x \vee(x \rightarrow y))$

substitute $\neg \boldsymbol{x}$ for $y$ in $\varphi: \quad \varphi[(\neg x) / y]$


## substitution examples in <br> $\varphi=(\forall x(\neg x \wedge(x \rightarrow y))) \rightarrow(\neg \neg x \vee(x \rightarrow y))$

substitute $\neg \boldsymbol{x}$ for $y$ in $\varphi: \quad \varphi[(\neg x) / y]$


X

## Syntax of QBF's: substitution in general

- Precise definition of substitution in general for QBF's where $u$ here is: $\mathbf{T}$, or $\mathbf{F}$, or a propositional variable :

$$
\varphi[u / x]= \begin{cases}\varphi & \text { if } \varphi=\mathbf{T} \text { or } \mathbf{F} \\ \varphi & \text { if } \varphi=y \text { and } x \neq y \\ u & \text { if } \varphi=y \text { and } x=y \\ \neg\left(\varphi^{\prime}[u / x]\right) & \text { if } \varphi=\neg \varphi^{\prime} \\ \varphi_{1}[u / x] \star \varphi_{2}[u / x] & \text { if } \varphi=\varphi_{1} \star \varphi_{2} \text { and } \\ & \star \in\{\wedge, \vee, \rightarrow\} \\ \mathbf{Q} y\left(\varphi^{\prime}[u / x]\right) & \text { if } \varphi=\mathbf{Q} y \varphi^{\prime}, \\ & \mathbf{Q} \in\{\forall, \exists\}, x \neq y, \text { and } \\ & u \text { is substitutable for } x \text { in } \varphi \\ \varphi & \text { if } \varphi=\mathbf{Q} y \varphi^{\prime}, \\ & \mathbf{Q} \in\{\forall, \exists\}, x=y\end{cases}
$$

## Syntax of QBF's

- Exercise: The formal definition of substitution on page 24 can be simplified if every QBF is such that:

1. there is at most one binding occurrence for the same variable,
2. a variable cannot have both free and bound occurrences.

Formalize this idea.
Hint: You first need to modify the BNF definition on page 2, so that well-formed QBF's are defined simultaneously with FV( ).

## Why Study QBF's?

1. theoretical reasons:
deciding validity of QBF's (sometimes referred to as the QBF problem and abbreviated as TQBF for "True QBF") is the archetype PSPACE-complete problem, just as satisfiability of propositional WFF's (the SAT problem) is the archetype NP-complete problem.
(See vast literature relating QBF's to complexity classes.)

## Why Study QBF's?

1. theoretical reasons:
deciding validity of QBF's (sometimes referred to as the QBF problem and abbreviated as TQBF for "True QBF") is the archetype PSPACE-complete problem, just as satisfiability of propositional WFF's (the SAT problem) is the archetype NP-complete problem.
(See vast literature relating QBF's to complexity classes.)
2. practical reasons:

QBF's provide an alternative to propositional WFF's which are often cumbersome and space-inefficient in formal modeling of systems. trade-off: QBF's are more expressive than propositional WFF's, but harder to decide their validity.

## Why Study QBF's?

1. theoretical reasons:
deciding validity of QBF's (sometimes referred to as the QBF problem and abbreviated as TQBF for "True QBF") is the archetype PSPACE-complete problem, just as satisfiability of propositional WFF's (the SAT problem) is the archetype NP-complete problem.
(See vast literature relating QBF's to complexity classes.)
2. practical reasons:

QBF's provide an alternative to propositional WFF's which are often cumbersome and space-inefficient in formal modeling of systems. trade-off: QBF's are more expressive than propositional WFF's, but harder to decide their validity.
3. pedagogical reasons:
the study of QBF's makes the transition from propositional logic to first-order logic a little easier.
caution: QBF's are not part of first-order logic (why?), QBF logic and first-order logic extend propositional logic in different ways. Nonetheless:
Exercise: There is a way of embedding QBF logic into first-order logic, by introducing appropriate binary predicate symbols and ...

## Formal Proof Systems for QBF's

- a natural deduction proof system for QBF's is possible and consists of:
- all the proof rules of natural deduction for propositional logic
- proof rules for universal quantification: " $\forall x$ e" and " $\forall x$ i" (slide 30)
- proof rules for existential quantification: " $\exists x$ e" and " $\exists x$ i" (slide 32)
- Hilbert-style proof systems are also possible (with axioms schemes and inference rules, not discussed here)
- tableaux-based proof systems are also possible (with additional expansion rules for the quantifiers, not discussed here)
- resolution-based proof systems for QBF's are also possible, after transforming QBF's into conjunctive normal form (CNF) - more on QBF's in CNF later
- QBF-solvers are implemented algorithms to decide validity of closed QBF's (validity and satisfiability of closed QBF's coincide, not open QBF's - why?).
(Development of QBF-solvers is currently far behind that of SAT-solvers.)


## two proof rules for universal quantification

- universal quantifier elimination

$$
\frac{\forall x \varphi}{\varphi[t / x]} \forall x \mathrm{e}
$$

(where $t$ is $\mathbf{T}$ or $\mathbf{F}$ or a variable $y$, provided $y$ is substitutable for $x$ )

## two proof rules for universal quantification

- universal quantifier elimination

$$
\frac{\forall x \varphi}{\varphi[t / x]} \forall x \mathrm{e}
$$

(where $t$ is $\mathbf{T}$ or $\mathbf{F}$ or a variable $y$, provided $y$ is substitutable for $x$ )

- universal quantifier introduction



## two proof rules for existential quantification

- existential quantifier introduction

$$
\frac{\varphi[t / x]}{\exists x \varphi} \exists x \text { i }
$$

(where $t$ is $\mathbf{T}$ or $\mathbf{F}$ or a variable $y$, provided $y$ is substitutable for $x$ )

## two proof rules for existential quantification

- existential quantifier introduction

$$
\frac{\varphi[t / x]}{\exists x \varphi} \exists x \text { i }
$$

(where $t$ is $\mathbf{T}$ or $\mathbf{F}$ or a variable $y$, provided $y$ is substitutable for $x$ )

- existential quantifier elimination

( $x_{0}$ cannot occur outside its box, in particular, it cannot occur in $\chi$ )
- Note: Rule ( $\exists x$ e) introduces both a fresh variable and an assumption.


## Formal Semantics for QBF's

Let $\mathcal{V}$ be a set of propositional variables.

- A valuation (or interpretation) of $\mathcal{V}$ is a map $\mathcal{I}: \mathcal{V} \rightarrow\{$ true, false $\}$.
- $\mathcal{V}$ is extended to an interpretation $\widetilde{\mathcal{I}}$ of $\operatorname{QBF}$ formulas $\varphi$ such that $\mathrm{FV}(\varphi) \subseteq \mathcal{V}$, by induction on the (inductive) BNF definition on page 2 :

$$
\widetilde{\mathcal{I}}(\varphi)= \begin{cases}\text { true } & \text { if } \varphi=\mathbf{T} \\ \text { false } & \text { if } \varphi=\mathbf{F} \\ \mathcal{I}(x) & \text { if } \varphi=x \\ \text { true } & \text { if } \varphi=\neg \varphi^{\prime} \text { and } \widetilde{\mathcal{I}}\left(\varphi^{\prime}\right)=\text { false } \\ \text { false } & \text { if } \varphi=\neg \varphi^{\prime} \text { and } \widetilde{\mathcal{I}}\left(\varphi^{\prime}\right)=\text { true } \\ \text { true } & \text { if } \varphi=\varphi_{1} \wedge \varphi_{2} \text { and } \widetilde{\mathcal{I}}\left(\varphi_{1}\right)=\text { true and } \widetilde{\mathcal{I}}\left(\varphi_{2}\right)=\text { true } \\ \text { false } & \text { if } \varphi=\varphi_{1} \wedge \varphi_{2} \text { and } \widetilde{\mathcal{I}}\left(\varphi_{1}\right)=\text { false or } \widetilde{\mathcal{I}}\left(\varphi_{2}\right)=\text { false } \\ \ldots & \ldots \\ \text { true } & \text { if } \varphi=\forall x \cdot \varphi^{\prime} \text { and } \widetilde{\mathcal{I}}\left(\varphi^{\prime}[\mathbf{T} / x]\right)=\text { true and } \widetilde{\mathcal{I}}\left(\varphi^{\prime}[\mathbf{F} / x]\right)=\text { true } \\ \text { false } & \text { if } \varphi=\forall x \cdot \varphi^{\prime} \text { and } \widetilde{\mathcal{I}}\left(\varphi^{\prime}[\mathbf{T} / x]\right)=\text { false or } \widetilde{\mathcal{I}}\left(\varphi^{\prime}[\mathbf{F} / x]\right)=\text { false } \\ \ldots & \ldots\end{cases}
$$

- If $S$ is a set of QBF formulas, an interpretation $\widetilde{\mathcal{I}}$ is a model of $S$, in symbols $\widetilde{\mathcal{I}} \models S$, iff $\widetilde{\mathcal{I}}(\varphi)=$ true for every $\varphi \in S$.


## Formal Semantics for QBF's (continued)

Useful connections between closed QBF's and open QBF's (a special case of open open QBF's are the propositional WFF's):

## Theorem

Let $\varphi$ be a QBF with free variables $\mathrm{FV}(\varphi)=\left\{x_{1}, \ldots, x_{n}\right\}$. Then $\varphi$ is satisfiable (respectively, valid) iff the closed formula $\exists x_{1} \cdots \exists x_{n} . \varphi$ (respectively, $\forall x_{1} \cdots \forall x_{n} . \varphi$ ) is satisfiable.

## Theorem

For closed QBF's, the notions of truth, validity and satisfiability coincide. Specifically, given a QBF $\varphi$, the following are equivalent statements:

- $\varphi$ is satisfiable.
- $\varphi$ is valid.
- $\widetilde{\mathcal{I}} \models \varphi$ for some valuation $\mathcal{I}: \mathcal{V} \rightarrow\{$ true, false $\}$.
- $\widetilde{\mathcal{I}} \models \varphi$ for every valuation $\mathcal{I}: \mathcal{V} \rightarrow\{$ true, false $\}$.

There is also a Soundness Theorem, a Compactness Theorem, and a Completeness Theorem, all proved as they were for the propositional logic.

## Prenex Form of QBF's

1. $\left(\mathbf{Q}_{1} x_{1} \varphi_{1}\right) \otimes\left(\mathbf{Q}_{2} x_{2} \varphi_{2}\right) \quad$ transformed to $\quad \mathbf{Q}_{1 x_{1}} \mathbf{Q}_{2} x_{2}\left(\varphi_{1} \otimes \varphi_{2}\right)$
where $\mathbf{Q}_{1}, \mathbf{Q}_{2} \in\{\forall, \exists\}$ and $\otimes \in\{\wedge, \vee\}$, provided
$x_{1}$ is not free in $\varphi_{1}$ and $x_{2}$ is not free in $\varphi_{2}$.
1a. special case of case 1 (for better QBF-solver performance):

$$
\left(\forall x_{1} \varphi_{1}\right) \wedge\left(\forall x_{2} \varphi_{2}\right) \quad \text { transformed to } \quad \forall x_{1}\left(\varphi_{1} \wedge \varphi_{2}\left[x_{2}:=x_{1}\right]\right)
$$

1b. special case of case 1 (for better QBF-solver performance):

$$
\left(\exists x_{1} \varphi_{1}\right) \vee\left(\exists x_{2} \varphi_{2}\right) \quad \text { transformed to } \quad \exists x_{1}\left(\varphi_{1} \vee \varphi_{2}\left[x_{2}:=x_{1}\right]\right)
$$

2. $\quad(\forall x \varphi) \rightarrow \psi \quad$ transformed to $\quad \exists x(\varphi \rightarrow \psi) \quad$ provided $x$ not free in $\psi$.
3. $\quad(\exists x \varphi) \rightarrow \psi \quad$ transformed to $\quad \forall x(\varphi \rightarrow \psi) \quad$ provided $x$ not free in $\psi$.
4. $\varphi \rightarrow(\mathbf{Q} x \psi) \quad$ transformed to $\quad \mathbf{Q} x(\varphi \rightarrow \psi) \quad$ provided $x$ not free in $\varphi$.
5. $\neg(\exists x \varphi)$ transformed to $\quad \forall x(\neg \varphi)$
6. $\neg(\forall x \varphi)$ transformed to $\exists x(\neg \varphi)$

## Conjunctive Normal Form \& Disjunctive Normal Form

- A QBF $\varphi$ is in

```
prenex conjunctive normal form (PCNF) or
```

prenex disjunctive normal form (PDNF)
iff $\varphi$ is in prenex form and its matrix is a CNF or a DNF, respectively.

- Generally, validity/satisfiability methods for QBF's (tableaux, resolution, QBF solvers, etc.)
perform best on PCNF (resp. PDNF) if their counterparts for propositional WFF's perform best on CNF (resp. DNF).
- QBF solvers require input WFF $\varphi$ be transformed into PCNF, (the matrix of $\varphi$ is transformed into an equisatisfiable, rather than an equivalent, propositional WFF to avoid exponential explosion).
- Warning: Transformation of a QBF $\varphi$ into a PCNF $\psi($ or PDNF $\psi$ ) is non-determinisitic. Special methods have been developed (and are being developed) for minimizing number of quantifiers and quantifier alternations in the prenex of $\psi$, for improved performance of QBF-solvers.


## transformation of QBF's for better QBF-solver performance

1. introduce abbreviations for subformulas

- example : consider a formula $\Phi$ of the form

$$
\Phi=\left(\varphi \vee \psi_{1}\right) \wedge\left(\varphi \vee \psi_{2}\right) \wedge\left(\varphi \vee \psi_{3}\right)
$$

- if we abbreviate (i.e., represent) $\varphi$ by the fresh variable $y$, we can write

$$
\Psi=\exists y .(y \leftrightarrow \varphi) \wedge\left(y \vee \psi_{1}\right) \wedge\left(y \vee \psi_{2}\right) \wedge\left(y \vee \psi_{3}\right)
$$

- exercise : $\Phi$ and $\Psi$ are logically equivalent
- advantage of $\Psi$ over $\Phi$ : subformula $\varphi$ occurs once (in $\Psi$ ) instead of three times (in $\Phi$ ) for the price of two logical connectives $\{" \wedge$ ", " $\leftrightarrow$ " $\}$ and one propositional variable $\{" y$ " $\}$


## transformation of QBF's for better QBF-solver performance

2. unify instances of the same subformula

- example : consider a formula $\Phi$ of the form

$$
\Phi=\theta\left(\varphi_{1}, \psi_{1}\right) \wedge \theta\left(\varphi_{2}, \psi_{2}\right) \wedge \theta\left(\varphi_{3}, \psi_{3}\right)
$$

- unify the three occurrences of the subformula $\theta$, and introduce fresh variables $x$ and $y$ to represent the $\varphi_{i}$ 's and the $\psi_{i}$ 's, resp., to obtain:

$$
\Psi=\forall x . \forall y \cdot\left(\bigvee_{i=1,2,3}\left(x \leftrightarrow \varphi_{i}\right) \wedge\left(y \leftrightarrow \psi_{i}\right)\right) \rightarrow \theta(x, y)
$$

- exercise : $\Phi$ and $\Psi$ are logically equivalent

3. for many other transformations, for better QBF-solver performance, see:
U. Bubeck and H. Büning, "Encoding Nested Boolean Functions as QBF's", in
J. on Satisfiability, Boolean Modeling and Computation, Vol. 8 (2012), pp. 101-116

## QBF as a game

A closed prenex QBF formula $\varphi$ can be viewed as a game between an existential player ( $\operatorname{Player} \exists$ ) and a universal player ( Player $\forall$ ):

- Existentially quantied variables are owned by Player $\exists$.
- Universally quantied variables are owned by Player $\forall$.
- On each turn of the game, the owner of an outermost unassigned variable assigns it a truth value (true or false).
- The goal of Player $\exists$ is to make $\varphi$ be true.
- The goal of Player $\forall$ is to make $\varphi$ be false.
- A player owns a literal $\ell$ if the player owns $\mathrm{FV}(\ell)$.

If $S$ is the set of propositional variables occurring in the closed prenex $\operatorname{QBF} \varphi$, then a round of the game on $\varphi$ defines an interpretation $\mathcal{I}: \mathcal{V} \rightarrow\{$ true,false $\}$.
Player $\exists$ wins if $\widetilde{\mathcal{I}}(\varphi)=$ true,$\quad$ Player $\forall$ wins if $\widetilde{\mathcal{I}}(\varphi)=$ false.


[^0]:    ${ }^{1}$ We do not say propositional atoms in order to emphasize that $x$ can be quantified.

[^1]:    ${ }^{1}$ We do not say propositional atoms in order to emphasize that $x$ can be quantified.

[^2]:    ${ }^{2}$ Note the convention, for better readability, of using "." which is not part of the formal syntax to separate a quantifier from its scope and omit the outer matching parentheses, i.e., we write $\forall x . \varphi$ instead ( $\forall x \varphi$ )

