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Syntax of QBF’s
I BNF definition of QBF’s:

ϕ ::= F | T | x | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) |

(∀x ϕ) | (∃x ϕ)

where x ranges over propositional variables. 1

I free and bound variables:
I a variable x may occur free or bound in a WFF ϕ
I if x is bound in ϕ, then there are

zero or more bound occurrences of x and
one or more binding occurrences of x in ϕ

I a binding occurrence of x is of the form “∀x” or “∃x”
I if a binding occurrence of x occurs as (Q x ϕ) where Q ∈ {∀,∃},

then ϕ is the scope of the binding occurrence

1
We do not say propositional atoms in order to emphasize that x can be quantified.
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Syntax of QBF’s
I scopes of two binding occurrences “Q x” and “Q′ x′” may be

disjoint: · · · (Q x · · · · · ·︸ ︷︷ ︸) · · · (Q′ x′ · · · · · ·︸ ︷︷ ︸) · · ·
or nested: · · · (Q x · · · (Q′ x′ · · · · · ·︸ ︷︷ ︸) · · ·︸ ︷︷ ︸) · · ·
but cannot overlap

I We define a function FV( ) which collects all the variables
occurring free in a WFF. Formally:

FV(ϕ) =



∅ if ϕ = F or T

{x} if ϕ = x

FV(ϕ′) if ϕ = ¬ϕ′

FV(ϕ1) ∪ FV(ϕ2) if ϕ = (ϕ1 ? ϕ2) and ? ∈ {∧,∨,→}

FV(ϕ′)− {x} if ϕ = (Qx ϕ′) and Q ∈ {∀,∃}

Note: If x has a bound occurrence in ϕ, it does not follow that x 6∈ FV(ϕ).
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Syntax of QBF’s
I ϕ is closed iff FV(ϕ) = ∅

I is the WFF ϕ of the form:

ϕ = · · ·
(

Q1 x (· · · x · · · )
)
· · ·

(
Q2 x (· · · x · · · )

)
· · ·

where Q1,Q2 ∈ {∀,∃}, equivalent to:

ϕ′ = · · ·
(

Q1 x (· · · x · · · )
)
· · ·

(
Q2 x′

↑
(· · · x′

↑
· · · )

)
· · · ??

I YES , ϕ and ϕ′ are equivalent

Question: What are the advantages of ϕ′ over ϕ?

Question: Can you write a procedure to transform ϕ into ϕ′?
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Syntax of QBF’s

I Examples of QBF’s:

1. a closed QBF (all occurrences of prop variables are bound):2

ϕ1 , ∀x. (x ∨ ∃y. (y ∨ ¬x))

2. an open QBF (some occurrences of propositional variables are free):

ϕ2 , (ϕ1) ∧ (x→ y) = ϕ′
1 ∧ (x→ y)

ϕ′
1 is ϕ1 after renaming x and y to x′ and y′

(what is good about this renaming??)

2
Note the convention, for better readability, of using “.” which is not part of the formal syntax to separate a quantifier from its

scope and omit the outer matching parentheses, i.e., we write ∀x. ϕ instead (∀x ϕ) .
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Syntax of QBF’s

renaming binding occurrences “Q1 x” and “Q2 x” in disjoint scopes

ϕ

ϕ2

Q2 x

x x

ϕ1

Q1 x

x x

ϕ′

ϕ′
2

Q2 x′

x′ x′

ϕ1

Q1 x

x x
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Syntax of QBF’s

renaming binding occurrences “Q1 x” and “Q2 x” in nested scopes

ϕ

ϕ2ϕ1

Q1 x

x Q2 x x

x x

ϕ′

ϕ2ϕ′
1

Q1 x

x Q2 x′ x

x′ x′
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substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬z for y in ϕ: ϕ[(¬z)/y] also written ϕ[y/(¬z)] and ϕ[y := ¬z]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

¬

z

x

¬

¬

x

∀x

∧

→

¬

z

x

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 12 of 41



substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬z for y in ϕ: ϕ[(¬z)/y] also written ϕ[y/(¬z)] and ϕ[y := ¬z]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

¬

z

x

¬

¬

x

∀x

∧

→

¬

z

x

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 13 of 41



substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬z for y in ϕ: ϕ[(¬z)/y] also written ϕ[y/(¬z)] and ϕ[y := ¬z]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

¬

z

x

¬

¬

x

∀x

∧

→

¬

z

x

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 14 of 41



substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬z for y in ϕ: ϕ[(¬z)/y] also written ϕ[y/(¬z)] and ϕ[y := ¬z]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

¬

z

x

¬

¬

x

∀x

∧

→

¬

z

x

¬

x

X
Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 15 of 41



substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬z for x in ϕ: ϕ[(¬z)/x]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

y¬

z

¬

¬

¬

z

∀x

∧

→

yx

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 16 of 41



substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬z for x in ϕ: ϕ[(¬z)/x]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

y¬

z

¬

¬

¬

z

∀x

∧

→

yx

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 17 of 41



substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬z for x in ϕ: ϕ[(¬z)/x]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

y¬

z

¬

¬

¬

z

∀x

∧

→

yx

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 18 of 41



substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬z for x in ϕ: ϕ[(¬z)/x]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

y¬

z

¬

¬

¬

z

∀x

∧

→

yx

¬

x

X
Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 19 of 41



substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬x for y in ϕ: ϕ[(¬x)/y]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

¬

x

x

¬

¬

x

∀x

∧

→

¬

x

x

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 20 of 41



substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬x for y in ϕ: ϕ[(¬x)/y]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

¬

x

x

¬

¬

x

∀x

∧

→

¬

x

x

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 21 of 41



substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬x for y in ϕ: ϕ[(¬x)/y]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

¬

x

x

¬

¬

x

∀x

∧

→

¬

x

x

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 22 of 41



substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬x for y in ϕ: ϕ[(¬x)/y]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

¬

x

x

¬

¬

x

∀x

∧

→

¬

x

x

¬

x

X
Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 23 of 41



Syntax of QBF’s: substitution in general
I Precise definition of substitution in general for QBF’s

where u here is: T , or F , or a propositional variable :

ϕ[u/x] =



ϕ if ϕ = T or F

ϕ if ϕ = y and x 6= y

u if ϕ = y and x = y

¬(ϕ′[u/x]) if ϕ = ¬ϕ′

ϕ1[u/x] ? ϕ2[u/x] if ϕ = ϕ1 ? ϕ2 and

? ∈ {∧,∨,→}

Qy (ϕ′[u/x]) if ϕ = Qyϕ′,

Q ∈ {∀, ∃}, x 6= y, and

u is substitutable for x in ϕ

ϕ if ϕ = Qyϕ′,

Q ∈ {∀, ∃}, x = y
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Syntax of QBF’s

I Exercise: The formal definition of substitution on page 24 can be
simplified if every QBF is such that:

1. there is at most one binding occurrence for the same variable,
2. a variable cannot have both free and bound occurrences.

Formalize this idea.

Hint: You first need to modify the BNF definition on page 2, so that well-formed
QBF’s are defined simultaneously with FV( ).
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Why Study QBF’s?
1. theoretical reasons:

deciding validity of QBF’s (sometimes referred to as the QBF problem
and abbreviated as TQBF for “True QBF”) is the archetype
PSPACE-complete problem, just as satisfiability of propositional WFF’s
(the SAT problem) is the archetype NP-complete problem.

(See vast literature relating QBF’s to complexity classes.)

2. practical reasons:
QBF’s provide an alternative to propositional WFF’s which are often
cumbersome and space-inefficient in formal modeling of systems.
trade-off: QBF’s are more expressive than propositional WFF’s, but
harder to decide their validity.

3. pedagogical reasons:
the study of QBF’s makes the transition from propositional logic to
first-order logic a little easier.

caution: QBF’s are not part of first-order logic (why?), QBF logic and first-order
logic extend propositional logic in different ways. Nonetheless:

Exercise: There is a way of embedding QBF logic into first-order logic, by
introducing appropriate binary predicate symbols and . . .

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 26 of 41



Why Study QBF’s?
1. theoretical reasons:

deciding validity of QBF’s (sometimes referred to as the QBF problem
and abbreviated as TQBF for “True QBF”) is the archetype
PSPACE-complete problem, just as satisfiability of propositional WFF’s
(the SAT problem) is the archetype NP-complete problem.

(See vast literature relating QBF’s to complexity classes.)

2. practical reasons:
QBF’s provide an alternative to propositional WFF’s which are often
cumbersome and space-inefficient in formal modeling of systems.
trade-off: QBF’s are more expressive than propositional WFF’s, but
harder to decide their validity.

3. pedagogical reasons:
the study of QBF’s makes the transition from propositional logic to
first-order logic a little easier.

caution: QBF’s are not part of first-order logic (why?), QBF logic and first-order
logic extend propositional logic in different ways. Nonetheless:

Exercise: There is a way of embedding QBF logic into first-order logic, by
introducing appropriate binary predicate symbols and . . .

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 27 of 41



Why Study QBF’s?
1. theoretical reasons:

deciding validity of QBF’s (sometimes referred to as the QBF problem
and abbreviated as TQBF for “True QBF”) is the archetype
PSPACE-complete problem, just as satisfiability of propositional WFF’s
(the SAT problem) is the archetype NP-complete problem.

(See vast literature relating QBF’s to complexity classes.)

2. practical reasons:
QBF’s provide an alternative to propositional WFF’s which are often
cumbersome and space-inefficient in formal modeling of systems.
trade-off: QBF’s are more expressive than propositional WFF’s, but
harder to decide their validity.

3. pedagogical reasons:
the study of QBF’s makes the transition from propositional logic to
first-order logic a little easier.

caution: QBF’s are not part of first-order logic (why?), QBF logic and first-order
logic extend propositional logic in different ways. Nonetheless:

Exercise: There is a way of embedding QBF logic into first-order logic, by
introducing appropriate binary predicate symbols and . . .

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 28 of 41



Formal Proof Systems for QBF’s

I a natural deduction proof system for QBF’s is possible and consists of:

I all the proof rules of natural deduction for propositional logic
I proof rules for universal quantification: “∀x e” and “∀x i” (slide 30)
I proof rules for existential quantification: “∃x e” and “∃x i” (slide 32)

I Hilbert-style proof systems are also possible
(with axioms schemes and inference rules, not discussed here)

I tableaux-based proof systems are also possible
(with additional expansion rules for the quantifiers, not discussed here)

I resolution-based proof systems for QBF’s are also possible, after transforming
QBF’s into conjunctive normal form (CNF) – more on QBF’s in CNF later

I QBF-solvers are implemented algorithms to decide validity of closed QBF’s
(validity and satisfiability of closed QBF’s coincide, not open QBF’s – why?).

(Development of QBF-solvers is currently far behind that of SAT-solvers.)
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two proof rules for universal quantification

I universal quantifier elimination

∀x ϕ
∀x e

ϕ[t/x]

(where t is T or F or a variable y, provided y is substitutable for x)

I universal quantifier introduction

∀x i
∀x ϕ

x0 fresh
...

ϕ[x0/x]
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two proof rules for existential quantification
I existential quantifier introduction

ϕ[t/x]
∃x i

∃x ϕ

(where t is T or F or a variable y, provided y is substitutable for x)

I existential quantifier elimination

∃x ϕ
∃x e

χ

x0 fresh

ϕ[x0/x] assumption
...

χ

(x0 cannot occur outside its box, in particular, it cannot occur in χ)

I Note: Rule (∃x e) introduces both a fresh variable and an assumption.
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Formal Semantics for QBF’s
Let V be a set of propositional variables.

I A valuation (or interpretation) of V is a map I : V → {true, false}.
I V is extended to an interpretation Ĩ of QBF formulas ϕ such that FV(ϕ) ⊆ V ,

by induction on the (inductive) BNF definition on page 2:

Ĩ(ϕ) =



true if ϕ = T

false if ϕ = F

I(x) if ϕ = x
true if ϕ = ¬ϕ′ and Ĩ(ϕ′) = false

false if ϕ = ¬ϕ′ and Ĩ(ϕ′) = true

true if ϕ = ϕ1 ∧ ϕ2 and Ĩ(ϕ1) = true and Ĩ(ϕ2) = true

false if ϕ = ϕ1 ∧ ϕ2 and Ĩ(ϕ1) = false or Ĩ(ϕ2) = false

. . . . . .

true if ϕ = ∀x.ϕ′ and Ĩ(ϕ′[T/x]) = true and Ĩ(ϕ′[F/x]) = true

false if ϕ = ∀x.ϕ′ and Ĩ(ϕ′[T/x]) = false or Ĩ(ϕ′[F/x]) = false

. . . . . .

I If S is a set of QBF formulas, an interpretation Ĩ is a model of S,

in symbols Ĩ |= S , iff Ĩ(ϕ) = true for every ϕ ∈ S.
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Formal Semantics for QBF’s (continued)
Useful connections between closed QBF’s and open QBF’s
(a special case of open open QBF’s are the propositional WFF’s):

Theorem
Let ϕ be a QBF with free variables FV(ϕ) = {x1, . . . , xn}. Then ϕ is satisfiable
(respectively, valid) iff the closed formula ∃x1 · · · ∃xn.ϕ (respectively,
∀x1 · · · ∀xn.ϕ) is satisfiable.

Theorem
For closed QBF’s, the notions of truth , validity and satisfiability coincide.
Specifically, given a QBF ϕ, the following are equivalent statements:

I ϕ is satisfiable.

I ϕ is valid.

I Ĩ |= ϕ for some valuation I : V → {true, false}.

I Ĩ |= ϕ for every valuation I : V → {true, false}.

There is also a Soundness Theorem, a Compactness Theorem, and a
Completeness Theorem, all proved as they were for the propositional logic.
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Prenex Form of QBF’s

1. (Q1x1 ϕ1) ⊗ (Q2x2 ϕ2) transformed to Q1x1 Q2x2
(
ϕ1 ⊗ ϕ2

)
where Q1,Q2 ∈ {∀,∃} and⊗ ∈ {∧,∨}, provided

x1 is not free in ϕ1 and x2 is not free in ϕ2.

1a. special case of case 1 (for better QBF-solver performance):

(∀x1 ϕ1) ∧ (∀x2 ϕ2) transformed to ∀x1
(
ϕ1 ∧ ϕ2[x2 := x1]

)
1b. special case of case 1 (for better QBF-solver performance):

(∃x1 ϕ1) ∨ (∃x2 ϕ2) transformed to ∃x1
(
ϕ1 ∨ ϕ2[x2 := x1]

)
2. (∀x ϕ) → ψ transformed to ∃x (ϕ → ψ) provided x not free in ψ.

3. (∃x ϕ) → ψ transformed to ∀x (ϕ → ψ) provided x not free in ψ.

4. ϕ → (Qx ψ) transformed to Qx (ϕ → ψ) provided x not free in ϕ.

5. ¬(∃x ϕ) transformed to ∀x (¬ϕ)

6. ¬(∀x ϕ) transformed to ∃x (¬ϕ)
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Conjunctive Normal Form & Disjunctive Normal Form
I A QBF ϕ is in

prenex conjunctive normal form (PCNF) or

prenex disjunctive normal form (PDNF)

iff ϕ is in prenex form and its matrix is a CNF or a DNF, respectively.

I Generally, validity/satisfiability methods for QBF’s

(tableaux, resolution, QBF solvers, etc.)

perform best on PCNF (resp. PDNF) if their counterparts for propositional
WFF’s perform best on CNF (resp. DNF).

I QBF solvers require input WFF ϕ be transformed into PCNF,

(the matrix of ϕ is transformed into an equisatisfiable, rather than an
equivalent, propositional WFF to avoid exponential explosion).

I Warning: Transformation of a QBF ϕ into a PCNF ψ (or PDNF ψ) is
non-determinisitic. Special methods have been developed (and are being
developed) for minimizing number of quantifiers and quantifier alternations
in the prenex of ψ, for improved performance of QBF-solvers.
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transformation of QBF’s for better QBF-solver performance
1. introduce abbreviations for subformulas

I example : consider a formula Φ of the form

Φ = (ϕ ∨ ψ1) ∧ (ϕ ∨ ψ2) ∧ (ϕ ∨ ψ3)

I if we abbreviate (i.e., represent) ϕ by the fresh variable y, we can
write

Ψ = ∃y. (y↔ ϕ) ∧ (y ∨ ψ1) ∧ (y ∨ ψ2) ∧ (y ∨ ψ3)

I exercise : Φ and Ψ are logically equivalent
I advantage of Ψ over Φ:

subformula ϕ occurs once (in Ψ) instead of three times (in Φ)
for the price of two logical connectives { “∧”, “↔” } and one
propositional variable { “y” }
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transformation of QBF’s for better QBF-solver performance
2. unify instances of the same subformula

I example : consider a formula Φ of the form

Φ = θ(ϕ1, ψ1) ∧ θ(ϕ2, ψ2) ∧ θ(ϕ3, ψ3)

I unify the three occurrences of the subformula θ, and introduce fresh
variables x and y to represent the ϕi’s and the ψi’s, resp., to obtain:

Ψ = ∀x. ∀y.
( ∨

i=1,2,3

(x↔ ϕi) ∧ (y↔ ψi)
)
→ θ(x, y)

I exercise : Φ and Ψ are logically equivalent

3. for many other transformations, for better QBF-solver performance, see:
U. Bubeck and H. Büning, “Encoding Nested Boolean Functions as QBF’s”, in
J. on Satisfiability, Boolean Modeling and Computation, Vol. 8 (2012), pp. 101-116
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QBF as a game
A closed prenex QBF formula ϕ can be viewed as a game between an
existential player ( Player ∃ ) and a universal player ( Player ∀ ):

I Existentially quantied variables are owned by Player ∃ .

I Universally quantied variables are owned by Player ∀ .

I On each turn of the game, the owner of an outermost unassigned variable
assigns it a truth value (true or false).

I The goal of Player ∃ is to make ϕ be true.

I The goal of Player ∀ is to make ϕ be false.

I A player owns a literal ` if the player owns FV(`).

If S is the set of propositional variables occurring in the closed prenex QBF ϕ,
then a round of the game on ϕ defines an interpretation I : V → {true, false}.

Player ∃ wins if Ĩ(ϕ) = true, Player ∀ wins if Ĩ(ϕ) = false.
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