
CS 512, Spring 2017, Handout 13

Quantified Boolean Formulas (QBF’s)

Assaf Kfoury

February 15, 2017

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 1 of 41

Syntax of QBF’s
I BNF definition of QBF’s:

ϕ ::= F | T | x | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) |

(∀x ϕ) | (∃x ϕ)

where x ranges over propositional variables. 1

I free and bound variables:
I a variable x may occur free or bound in a WFF ϕ
I if x is bound in ϕ, then there are

zero or more bound occurrences of x and
one or more binding occurrences of x in ϕ

I a binding occurrence of x is of the form “∀x” or “∃x”
I if a binding occurrence of x occurs as (Q x ϕ) where Q ∈ {∀,∃},

then ϕ is the scope of the binding occurrence

1
We do not say propositional atoms in order to emphasize that x can be quantified.

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 2 of 41

Syntax of QBF’s
I BNF definition of QBF’s:

ϕ ::= F | T | x | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) |

(∀x ϕ) | (∃x ϕ)

where x ranges over propositional variables. 1

I free and bound variables:
I a variable x may occur free or bound in a WFF ϕ
I if x is bound in ϕ, then there are

zero or more bound occurrences of x and
one or more binding occurrences of x in ϕ

I a binding occurrence of x is of the form “∀x” or “∃x”
I if a binding occurrence of x occurs as (Q x ϕ) where Q ∈ {∀,∃},

then ϕ is the scope of the binding occurrence

1
We do not say propositional atoms in order to emphasize that x can be quantified.

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 3 of 41

Syntax of QBF’s
I scopes of two binding occurrences “Q x” and “Q′ x′” may be

disjoint: · · · (Q x · · · · · ·︸ ︷︷ ︸) · · · (Q′ x′ · · · · · ·︸ ︷︷ ︸) · · ·
or nested: · · · (Q x · · · (Q′ x′ · · · · · ·︸ ︷︷ ︸) · · ·︸ ︷︷ ︸) · · ·
but cannot overlap

I We define a function FV() which collects all the variables
occurring free in a WFF. Formally:

FV(ϕ) =

∅ if ϕ = F or T

{x} if ϕ = x

FV(ϕ′) if ϕ = ¬ϕ′

FV(ϕ1) ∪ FV(ϕ2) if ϕ = (ϕ1 ? ϕ2) and ? ∈ {∧,∨,→}

FV(ϕ′)− {x} if ϕ = (Qx ϕ′) and Q ∈ {∀,∃}

Note: If x has a bound occurrence in ϕ, it does not follow that x 6∈ FV(ϕ).

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 4 of 41

Syntax of QBF’s
I scopes of two binding occurrences “Q x” and “Q′ x′” may be

disjoint: · · · (Q x · · · · · ·︸ ︷︷ ︸) · · · (Q′ x′ · · · · · ·︸ ︷︷ ︸) · · ·
or nested: · · · (Q x · · · (Q′ x′ · · · · · ·︸ ︷︷ ︸) · · ·︸ ︷︷ ︸) · · ·
but cannot overlap

I We define a function FV() which collects all the variables
occurring free in a WFF. Formally:

FV(ϕ) =

∅ if ϕ = F or T

{x} if ϕ = x

FV(ϕ′) if ϕ = ¬ϕ′

FV(ϕ1) ∪ FV(ϕ2) if ϕ = (ϕ1 ? ϕ2) and ? ∈ {∧,∨,→}

FV(ϕ′)− {x} if ϕ = (Qx ϕ′) and Q ∈ {∀,∃}

Note: If x has a bound occurrence in ϕ, it does not follow that x 6∈ FV(ϕ).

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 5 of 41

Syntax of QBF’s
I ϕ is closed iff FV(ϕ) = ∅

I is the WFF ϕ of the form:

ϕ = · · ·
(

Q1 x (· · · x · · ·)
)
· · ·

(
Q2 x (· · · x · · ·)

)
· · ·

where Q1,Q2 ∈ {∀,∃}, equivalent to:

ϕ′ = · · ·
(

Q1 x (· · · x · · ·)
)
· · ·

(
Q2 x′

↑
(· · · x′

↑
· · ·)

)
· · · ??

I YES , ϕ and ϕ′ are equivalent

Question: What are the advantages of ϕ′ over ϕ?

Question: Can you write a procedure to transform ϕ into ϕ′?

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 6 of 41

Syntax of QBF’s
I ϕ is closed iff FV(ϕ) = ∅
I is the WFF ϕ of the form:

ϕ = · · ·
(

Q1 x (· · · x · · ·)
)
· · ·

(
Q2 x (· · · x · · ·)

)
· · ·

where Q1,Q2 ∈ {∀,∃}, equivalent to:

ϕ′ = · · ·
(

Q1 x (· · · x · · ·)
)
· · ·

(
Q2 x′

↑
(· · · x′

↑
· · ·)

)
· · · ??

I YES , ϕ and ϕ′ are equivalent

Question: What are the advantages of ϕ′ over ϕ?

Question: Can you write a procedure to transform ϕ into ϕ′?

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 7 of 41

Syntax of QBF’s
I ϕ is closed iff FV(ϕ) = ∅
I is the WFF ϕ of the form:

ϕ = · · ·
(

Q1 x (· · · x · · ·)
)
· · ·

(
Q2 x (· · · x · · ·)

)
· · ·

where Q1,Q2 ∈ {∀,∃}, equivalent to:

ϕ′ = · · ·
(

Q1 x (· · · x · · ·)
)
· · ·

(
Q2 x′

↑
(· · · x′

↑
· · ·)

)
· · · ??

I YES , ϕ and ϕ′ are equivalent

Question: What are the advantages of ϕ′ over ϕ?

Question: Can you write a procedure to transform ϕ into ϕ′?

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 8 of 41

Syntax of QBF’s

I Examples of QBF’s:

1. a closed QBF (all occurrences of prop variables are bound):2

ϕ1 , ∀x. (x ∨ ∃y. (y ∨ ¬x))

2. an open QBF (some occurrences of propositional variables are free):

ϕ2 , (ϕ1) ∧ (x→ y) = ϕ′
1 ∧ (x→ y)

ϕ′
1 is ϕ1 after renaming x and y to x′ and y′

(what is good about this renaming??)

2
Note the convention, for better readability, of using “.” which is not part of the formal syntax to separate a quantifier from its

scope and omit the outer matching parentheses, i.e., we write ∀x. ϕ instead (∀x ϕ) .

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 9 of 41

Syntax of QBF’s

renaming binding occurrences “Q1 x” and “Q2 x” in disjoint scopes

ϕ

ϕ2

Q2 x

x x

ϕ1

Q1 x

x x

ϕ′

ϕ′
2

Q2 x′

x′ x′

ϕ1

Q1 x

x x

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 10 of 41

Syntax of QBF’s

renaming binding occurrences “Q1 x” and “Q2 x” in nested scopes

ϕ

ϕ2ϕ1

Q1 x

x Q2 x x

x x

ϕ′

ϕ2ϕ′
1

Q1 x

x Q2 x′ x

x′ x′

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 11 of 41

substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬z for y in ϕ: ϕ[(¬z)/y] also written ϕ[y/(¬z)] and ϕ[y := ¬z]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

¬

z

x

¬

¬

x

∀x

∧

→

¬

z

x

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 12 of 41

substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬z for y in ϕ: ϕ[(¬z)/y] also written ϕ[y/(¬z)] and ϕ[y := ¬z]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

¬

z

x

¬

¬

x

∀x

∧

→

¬

z

x

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 13 of 41

substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬z for y in ϕ: ϕ[(¬z)/y] also written ϕ[y/(¬z)] and ϕ[y := ¬z]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

¬

z

x

¬

¬

x

∀x

∧

→

¬

z

x

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 14 of 41

substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬z for y in ϕ: ϕ[(¬z)/y] also written ϕ[y/(¬z)] and ϕ[y := ¬z]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

¬

z

x

¬

¬

x

∀x

∧

→

¬

z

x

¬

x

X
Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 15 of 41

substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬z for x in ϕ: ϕ[(¬z)/x]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

y¬

z

¬

¬

¬

z

∀x

∧

→

yx

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 16 of 41

substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬z for x in ϕ: ϕ[(¬z)/x]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

y¬

z

¬

¬

¬

z

∀x

∧

→

yx

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 17 of 41

substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬z for x in ϕ: ϕ[(¬z)/x]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

y¬

z

¬

¬

¬

z

∀x

∧

→

yx

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 18 of 41

substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬z for x in ϕ: ϕ[(¬z)/x]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

y¬

z

¬

¬

¬

z

∀x

∧

→

yx

¬

x

X
Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 19 of 41

substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬x for y in ϕ: ϕ[(¬x)/y]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

¬

x

x

¬

¬

x

∀x

∧

→

¬

x

x

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 20 of 41

substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬x for y in ϕ: ϕ[(¬x)/y]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

¬

x

x

¬

¬

x

∀x

∧

→

¬

x

x

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 21 of 41

substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬x for y in ϕ: ϕ[(¬x)/y]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

¬

x

x

¬

¬

x

∀x

∧

→

¬

x

x

¬

x

X

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 22 of 41

substitution examples in ϕ = (∀x (¬x ∧ (x→ y)))→ (¬¬x ∨ (x→ y))

substitute ¬x for y in ϕ: ϕ[(¬x)/y]

→

∨

→

yx

¬

¬

x

∀x

∧

→

yx

¬

x

→

∨

→

¬

x

x

¬

¬

x

∀x

∧

→

¬

x

x

¬

x

X
Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 23 of 41

Syntax of QBF’s: substitution in general
I Precise definition of substitution in general for QBF’s

where u here is: T , or F , or a propositional variable :

ϕ[u/x] =

ϕ if ϕ = T or F

ϕ if ϕ = y and x 6= y

u if ϕ = y and x = y

¬(ϕ′[u/x]) if ϕ = ¬ϕ′

ϕ1[u/x] ? ϕ2[u/x] if ϕ = ϕ1 ? ϕ2 and

? ∈ {∧,∨,→}

Qy (ϕ′[u/x]) if ϕ = Qyϕ′,

Q ∈ {∀, ∃}, x 6= y, and

u is substitutable for x in ϕ

ϕ if ϕ = Qyϕ′,

Q ∈ {∀, ∃}, x = y

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 24 of 41

Syntax of QBF’s

I Exercise: The formal definition of substitution on page 24 can be
simplified if every QBF is such that:

1. there is at most one binding occurrence for the same variable,
2. a variable cannot have both free and bound occurrences.

Formalize this idea.

Hint: You first need to modify the BNF definition on page 2, so that well-formed
QBF’s are defined simultaneously with FV().

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 25 of 41

Why Study QBF’s?
1. theoretical reasons:

deciding validity of QBF’s (sometimes referred to as the QBF problem
and abbreviated as TQBF for “True QBF”) is the archetype
PSPACE-complete problem, just as satisfiability of propositional WFF’s
(the SAT problem) is the archetype NP-complete problem.

(See vast literature relating QBF’s to complexity classes.)

2. practical reasons:
QBF’s provide an alternative to propositional WFF’s which are often
cumbersome and space-inefficient in formal modeling of systems.
trade-off: QBF’s are more expressive than propositional WFF’s, but
harder to decide their validity.

3. pedagogical reasons:
the study of QBF’s makes the transition from propositional logic to
first-order logic a little easier.

caution: QBF’s are not part of first-order logic (why?), QBF logic and first-order
logic extend propositional logic in different ways. Nonetheless:

Exercise: There is a way of embedding QBF logic into first-order logic, by
introducing appropriate binary predicate symbols and . . .

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 26 of 41

Why Study QBF’s?
1. theoretical reasons:

deciding validity of QBF’s (sometimes referred to as the QBF problem
and abbreviated as TQBF for “True QBF”) is the archetype
PSPACE-complete problem, just as satisfiability of propositional WFF’s
(the SAT problem) is the archetype NP-complete problem.

(See vast literature relating QBF’s to complexity classes.)

2. practical reasons:
QBF’s provide an alternative to propositional WFF’s which are often
cumbersome and space-inefficient in formal modeling of systems.
trade-off: QBF’s are more expressive than propositional WFF’s, but
harder to decide their validity.

3. pedagogical reasons:
the study of QBF’s makes the transition from propositional logic to
first-order logic a little easier.

caution: QBF’s are not part of first-order logic (why?), QBF logic and first-order
logic extend propositional logic in different ways. Nonetheless:

Exercise: There is a way of embedding QBF logic into first-order logic, by
introducing appropriate binary predicate symbols and . . .

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 27 of 41

Why Study QBF’s?
1. theoretical reasons:

deciding validity of QBF’s (sometimes referred to as the QBF problem
and abbreviated as TQBF for “True QBF”) is the archetype
PSPACE-complete problem, just as satisfiability of propositional WFF’s
(the SAT problem) is the archetype NP-complete problem.

(See vast literature relating QBF’s to complexity classes.)

2. practical reasons:
QBF’s provide an alternative to propositional WFF’s which are often
cumbersome and space-inefficient in formal modeling of systems.
trade-off: QBF’s are more expressive than propositional WFF’s, but
harder to decide their validity.

3. pedagogical reasons:
the study of QBF’s makes the transition from propositional logic to
first-order logic a little easier.

caution: QBF’s are not part of first-order logic (why?), QBF logic and first-order
logic extend propositional logic in different ways. Nonetheless:

Exercise: There is a way of embedding QBF logic into first-order logic, by
introducing appropriate binary predicate symbols and . . .

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 28 of 41

Formal Proof Systems for QBF’s

I a natural deduction proof system for QBF’s is possible and consists of:

I all the proof rules of natural deduction for propositional logic
I proof rules for universal quantification: “∀x e” and “∀x i” (slide 30)
I proof rules for existential quantification: “∃x e” and “∃x i” (slide 32)

I Hilbert-style proof systems are also possible
(with axioms schemes and inference rules, not discussed here)

I tableaux-based proof systems are also possible
(with additional expansion rules for the quantifiers, not discussed here)

I resolution-based proof systems for QBF’s are also possible, after transforming
QBF’s into conjunctive normal form (CNF) – more on QBF’s in CNF later

I QBF-solvers are implemented algorithms to decide validity of closed QBF’s
(validity and satisfiability of closed QBF’s coincide, not open QBF’s – why?).

(Development of QBF-solvers is currently far behind that of SAT-solvers.)

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 29 of 41

two proof rules for universal quantification

I universal quantifier elimination

∀x ϕ
∀x e

ϕ[t/x]

(where t is T or F or a variable y, provided y is substitutable for x)

I universal quantifier introduction

∀x i
∀x ϕ

x0 fresh
...

ϕ[x0/x]

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 30 of 41

two proof rules for universal quantification

I universal quantifier elimination

∀x ϕ
∀x e

ϕ[t/x]

(where t is T or F or a variable y, provided y is substitutable for x)

I universal quantifier introduction

∀x i
∀x ϕ

x0 fresh
...

ϕ[x0/x]

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 31 of 41

two proof rules for existential quantification
I existential quantifier introduction

ϕ[t/x]
∃x i

∃x ϕ

(where t is T or F or a variable y, provided y is substitutable for x)

I existential quantifier elimination

∃x ϕ
∃x e

χ

x0 fresh

ϕ[x0/x] assumption
...

χ

(x0 cannot occur outside its box, in particular, it cannot occur in χ)

I Note: Rule (∃x e) introduces both a fresh variable and an assumption.

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 32 of 41

two proof rules for existential quantification
I existential quantifier introduction

ϕ[t/x]
∃x i

∃x ϕ

(where t is T or F or a variable y, provided y is substitutable for x)

I existential quantifier elimination

∃x ϕ
∃x e

χ

x0 fresh

ϕ[x0/x] assumption
...

χ

(x0 cannot occur outside its box, in particular, it cannot occur in χ)

I Note: Rule (∃x e) introduces both a fresh variable and an assumption.

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 33 of 41

Formal Semantics for QBF’s
Let V be a set of propositional variables.

I A valuation (or interpretation) of V is a map I : V → {true, false}.
I V is extended to an interpretation Ĩ of QBF formulas ϕ such that FV(ϕ) ⊆ V ,

by induction on the (inductive) BNF definition on page 2:

Ĩ(ϕ) =

true if ϕ = T

false if ϕ = F

I(x) if ϕ = x
true if ϕ = ¬ϕ′ and Ĩ(ϕ′) = false

false if ϕ = ¬ϕ′ and Ĩ(ϕ′) = true

true if ϕ = ϕ1 ∧ ϕ2 and Ĩ(ϕ1) = true and Ĩ(ϕ2) = true

false if ϕ = ϕ1 ∧ ϕ2 and Ĩ(ϕ1) = false or Ĩ(ϕ2) = false

.

true if ϕ = ∀x.ϕ′ and Ĩ(ϕ′[T/x]) = true and Ĩ(ϕ′[F/x]) = true

false if ϕ = ∀x.ϕ′ and Ĩ(ϕ′[T/x]) = false or Ĩ(ϕ′[F/x]) = false

.

I If S is a set of QBF formulas, an interpretation Ĩ is a model of S,

in symbols Ĩ |= S , iff Ĩ(ϕ) = true for every ϕ ∈ S.

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 34 of 41

Formal Semantics for QBF’s (continued)
Useful connections between closed QBF’s and open QBF’s
(a special case of open open QBF’s are the propositional WFF’s):

Theorem
Let ϕ be a QBF with free variables FV(ϕ) = {x1, . . . , xn}. Then ϕ is satisfiable
(respectively, valid) iff the closed formula ∃x1 · · · ∃xn.ϕ (respectively,
∀x1 · · · ∀xn.ϕ) is satisfiable.

Theorem
For closed QBF’s, the notions of truth , validity and satisfiability coincide.
Specifically, given a QBF ϕ, the following are equivalent statements:

I ϕ is satisfiable.

I ϕ is valid.

I Ĩ |= ϕ for some valuation I : V → {true, false}.

I Ĩ |= ϕ for every valuation I : V → {true, false}.

There is also a Soundness Theorem, a Compactness Theorem, and a
Completeness Theorem, all proved as they were for the propositional logic.

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 35 of 41

Prenex Form of QBF’s

1. (Q1x1 ϕ1) ⊗ (Q2x2 ϕ2) transformed to Q1x1 Q2x2
(
ϕ1 ⊗ ϕ2

)
where Q1,Q2 ∈ {∀,∃} and⊗ ∈ {∧,∨}, provided

x1 is not free in ϕ1 and x2 is not free in ϕ2.

1a. special case of case 1 (for better QBF-solver performance):

(∀x1 ϕ1) ∧ (∀x2 ϕ2) transformed to ∀x1
(
ϕ1 ∧ ϕ2[x2 := x1]

)
1b. special case of case 1 (for better QBF-solver performance):

(∃x1 ϕ1) ∨ (∃x2 ϕ2) transformed to ∃x1
(
ϕ1 ∨ ϕ2[x2 := x1]

)
2. (∀x ϕ) → ψ transformed to ∃x (ϕ → ψ) provided x not free in ψ.

3. (∃x ϕ) → ψ transformed to ∀x (ϕ → ψ) provided x not free in ψ.

4. ϕ → (Qx ψ) transformed to Qx (ϕ → ψ) provided x not free in ϕ.

5. ¬(∃x ϕ) transformed to ∀x (¬ϕ)

6. ¬(∀x ϕ) transformed to ∃x (¬ϕ)

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 36 of 41

Conjunctive Normal Form & Disjunctive Normal Form
I A QBF ϕ is in

prenex conjunctive normal form (PCNF) or

prenex disjunctive normal form (PDNF)

iff ϕ is in prenex form and its matrix is a CNF or a DNF, respectively.

I Generally, validity/satisfiability methods for QBF’s

(tableaux, resolution, QBF solvers, etc.)

perform best on PCNF (resp. PDNF) if their counterparts for propositional
WFF’s perform best on CNF (resp. DNF).

I QBF solvers require input WFF ϕ be transformed into PCNF,

(the matrix of ϕ is transformed into an equisatisfiable, rather than an
equivalent, propositional WFF to avoid exponential explosion).

I Warning: Transformation of a QBF ϕ into a PCNF ψ (or PDNF ψ) is
non-determinisitic. Special methods have been developed (and are being
developed) for minimizing number of quantifiers and quantifier alternations
in the prenex of ψ, for improved performance of QBF-solvers.

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 37 of 41

transformation of QBF’s for better QBF-solver performance
1. introduce abbreviations for subformulas

I example : consider a formula Φ of the form

Φ = (ϕ ∨ ψ1) ∧ (ϕ ∨ ψ2) ∧ (ϕ ∨ ψ3)

I if we abbreviate (i.e., represent) ϕ by the fresh variable y, we can
write

Ψ = ∃y. (y↔ ϕ) ∧ (y ∨ ψ1) ∧ (y ∨ ψ2) ∧ (y ∨ ψ3)

I exercise : Φ and Ψ are logically equivalent
I advantage of Ψ over Φ:

subformula ϕ occurs once (in Ψ) instead of three times (in Φ)
for the price of two logical connectives { “∧”, “↔” } and one
propositional variable { “y” }

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 38 of 41

transformation of QBF’s for better QBF-solver performance
2. unify instances of the same subformula

I example : consider a formula Φ of the form

Φ = θ(ϕ1, ψ1) ∧ θ(ϕ2, ψ2) ∧ θ(ϕ3, ψ3)

I unify the three occurrences of the subformula θ, and introduce fresh
variables x and y to represent the ϕi’s and the ψi’s, resp., to obtain:

Ψ = ∀x. ∀y.
(∨

i=1,2,3

(x↔ ϕi) ∧ (y↔ ψi)
)
→ θ(x, y)

I exercise : Φ and Ψ are logically equivalent

3. for many other transformations, for better QBF-solver performance, see:
U. Bubeck and H. Büning, “Encoding Nested Boolean Functions as QBF’s”, in
J. on Satisfiability, Boolean Modeling and Computation, Vol. 8 (2012), pp. 101-116

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 39 of 41

QBF as a game
A closed prenex QBF formula ϕ can be viewed as a game between an
existential player (Player ∃) and a universal player (Player ∀):

I Existentially quantied variables are owned by Player ∃ .

I Universally quantied variables are owned by Player ∀ .

I On each turn of the game, the owner of an outermost unassigned variable
assigns it a truth value (true or false).

I The goal of Player ∃ is to make ϕ be true.

I The goal of Player ∀ is to make ϕ be false.

I A player owns a literal ` if the player owns FV(`).

If S is the set of propositional variables occurring in the closed prenex QBF ϕ,
then a round of the game on ϕ defines an interpretation I : V → {true, false}.

Player ∃ wins if Ĩ(ϕ) = true, Player ∀ wins if Ĩ(ϕ) = false.

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 40 of 41

Assaf Kfoury, CS 512, Spring 2017, Handout 13 page 41 of 41

