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background and reading material

I The last chapter, Chapter 6, in the book [LCS] is entirely devoted to BDD’s.
You should read at least Sections 6.1 and 6.2 .

Sections 6.3 and 6.4 go into topics that will not be covered this semester
(symbolic model-checking and mu-calculus), but still cover material
that will deepen your knowledge of BDD’s, if you can handle them.

My presentation is somewhat different from that in [LCS], especially in
regard to explaining connections between propositional WFF’s and BDD’s.

I Although there is rather little on BDD’s, especially from a persepctive
stressing formal methods and formal modeling, in textooks (of which I am
aware),1 there is a lot on BDD’s that you can find by searching the Web.

For a good expository account of BDD’s and their history, click here .

1
There is a book by Rolf Drechsler and Bernd Becker, Binary Decision Diagrams, Theory and Practice , 1998, written from the

perspective of people working on VLSI (Very Large Scale Integration) and the design of electronic circuits. From an algorithmic

perspective, there is a very nice section (Section 7.1.4) in Donald Knuth, The Art of Computer Programming, Vol. 4 , 2008.
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canonical representations of WFF’s of propositional logic?
I given a WFF ϕ of propositional logic, is there a canonical representation

of ϕ, call it ϕ?, satisfying the following condition:

for every WFF ψ of propositional logic,
ϕ and ψ are equivalent iff ϕ? = ψ? ??

(“ϕ? = ψ?” means ϕ? and ψ? are syntactically the same.)

I if yes, hopefully ϕ? and ψ? are obtained by “easy” syntactic
transformation, allowing for a “quick” syntactic test ϕ? = ψ?

I perhaps the CNF’s of propositional WFF’s can be the desired canonical
representations???

I or perhaps the DNF’s of propositional WFF’s can be the desired canonical
representations???
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bad news: CNF’s and DNF’s are not canonical representations
I Two WFF’s of propositional logic:

ϕ , (x ∧ (y ∨ z))

ψ , (x ∧ (x ∨ y) ∧ (y ∨ z))

I ϕ and ψ are both in CNF

I ϕ and ψ are equivalent

I yet, ϕ and ψ are syntactically different

I Conclusion:
CNF’s are not canonical representations of propositional WFF’s.

Same conclusion for DNF’s.
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truth-table representation of propositional WFF’s is canonical
I Canonicity of Truth Tables: For arbitrary propositional WFF’s ϕ1 and ϕ2,
ϕ1 and ϕ2 are equivalent iff table(ϕ1) = table(ϕ2).2

The equivalence of ϕ1 and ϕ2 is therefore reduced

to a syntactic test of equality between table(ϕ1) and table(ϕ2) .

I Example: for the WFF’s ϕ = (x ∧ (y ∨ z)) and ψ = (x ∧ (x ∨ y) ∧ (y ∨ z))
on slide 5, table(ϕ) = table(ψ) is the following truth-table:

x y z ϕ ψ

F F F F F
F F T F F
F T F F F
F T T F F
T F F F F
T F T T T
T T F T T
T T T T T

I But canonicity of truth tables comes with a heavy price, which is . . .

2
We limit table(ϕ) to the columns corresponding to the variables in ϕ together with the last column in the truth-table of ϕ.
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in search of a canonical representation of propositional WFF’s
In the next few slides, we show:

I how to transform an arbitrary propositional WFF ϕ to a

binary decision tree (BDT) representing ϕ,

I how to translate a binary decision tree (BDT) T back to a

propositional WFF that T represents,

I how to transform a binary decision tree (BDT) T to an equivalent

binary decision diagram (BDD) D.

I how to transform a binary decision diagram (BDD) D to an equivalent

reduced ordered binary decision diagram (OBDD) D′.
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from a propositional WFF to a binary decision tree (BDT)
for propositional WFF ϕ with atoms in X = {x1, . . . , xn}, two basic approaches:

(A) substitute ⊥ (left branch) and > (right branch) for the atoms in X in some
order, delaying simplification until all atoms are replaced.

(B) substitute ⊥ (left branch) and > (right branch) for the atoms in X in some
order, without delaying simplification until all atoms are replaced.

I method (A) produces a full binary tree with exactly (2n − 1) internal
nodes and 2n leaf nodes.

I method (B) produces a binary tree with at most (2n − 1) internal nodes
and 2n leaf nodes.

I simplification in both methods based on, for arbitrary WFF ψ:

¬¬ψ ≡ ψ ψ ∨ ¬ψ ≡ > ψ ∧ ¬ψ ≡ ⊥
> ∨ ψ ≡ > ⊥ ∨ ψ ≡ ψ

> ∧ ψ ≡ ψ ⊥ ∧ ψ ≡ ⊥

as well as (ψ → ψ′) ≡ (¬ψ ∨ ψ′), commutativity of “∨” and “∧”, etc.
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from a propositional WFF to a binary decision tree (BDT)
I Example: applying method (A) to WFF ϕ , (q→ p) ∧ r → (p↔ r) ∧ q:

(q→ p) ∧ r → (p↔ r) ∧ q

(q→ ⊥) ∧ r → (⊥ ↔ r) ∧ q (q→ >) ∧ r → (> ↔ r) ∧ q

(⊥ → ⊥) ∧ r → (⊥ ↔ r) ∧ ⊥ (> → ⊥) ∧ r → (⊥ ↔ r) ∧ > (⊥ → >) ∧ r → (> ↔ r) ∧ ⊥ (> → >) ∧ r → (> ↔ r) ∧ >

(⊥ → ⊥) ∧ ⊥ → (⊥ ↔ ⊥) ∧ ⊥ (> → ⊥) ∧ > → (⊥ ↔ >) ∧ > . . . . . . . . . . . . . . . . . .

> ⊥ > > > ⊥ > >

p := ⊥ p := >

q := ⊥ q := > q := ⊥ q := >

r := ⊥ r := > r := ⊥ r := > r := ⊥ r := > r := ⊥ r := >

The preceding is a binary tree, labelled in a particular way, but NOT yet a BDT!
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from a propositional WFF to a binary decision tree (BDT)
I Example: applying method (B) to WFF ϕ , (q→ p) ∧ r → (p↔ r) ∧ q:

(q→ p) ∧ r → (p↔ r) ∧ q

¬q ∧ r → ¬r ∧ q r → (r ∧ q)

¬r > ¬r >

> ⊥ > ⊥

p := ⊥ p := >

q := ⊥ q := > q := ⊥ q := >

r := ⊥ r := > r := ⊥ r := >

The preceding is a binary tree, labelled in a particular way, but NOT yet a BDT!
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from a propositional WFF to a binary decision tree (BDT)
Remarks:

I for the same WFF ϕ , (q→ p) ∧ r → (p↔ r) ∧ q in slide 11, method
(B) produces different trees for different orderings of the atoms {p, q, r}.

Exercise: apply method (B) to ϕ using the ordering: (1) r, (2) q, and (3) p.

I the trees returned by methods (A) and (B) give the same complete
semantic information about the input WFF ϕ.

for the input ϕ , (q→ p) ∧ r → (p↔ r) ∧ q in slides 10 and 11:

ϕ is not a tautology/valid WFF – some leaf nodes are ⊥
ϕ is not unsatisfiable/contradictory WFF – some leaf nodes are >
ϕ is contingent WFF :

I ϕ is satisfied by any valuation of {p, q, r}
induced by a path from the root to a leaf node >

I ϕ is falsified by any valuation of {p, q, r}
induced by a path from the root to a leaf node ⊥
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from a propositional WFF to a binary decision tree (BDT)
I one more step to transform the trees in slides 10 and 11 returned by

methods (A) and (B) into what are called binary decision trees (BDT’s) :

p

q q

r r r r

1 0 1 1 1 0 1 1

p

q q

r 1 r 1

1 0 1 0

Note that, starting from the same WFF, we obtained two different BDT’s!

And the shape of the BDT on the right changes with the orderings of {p, q, r}!!
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from a binary decision tree (BDT) to a propositional WFF

I one approach is to write a DNF (disjunction of conjuncts) where each
conjunct represents the truth assignment along a path from the root of the
BDT to a leaf node labelled “1”.

Example: We can write the DNF’s ϕA and ϕB, below, for the BDT’s on the left
and on the right in slide 13, respectively:

ϕA , (¬p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ ¬r) ∨ (p ∧ q ∧ ¬r) ∨ (p ∧ q ∧ r)

ϕB , (¬p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ q) ∨ (p ∧ ¬q ∧ ¬r) ∨ (p ∧ q)

there are 6 conjuncts in ϕA and 4 conjuncts in ϕB, corresponding to the number
of paths in each of the two BDT’s leading to a leaf node “1”.
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from a binary decision tree (BDT) to a propositional WFF

I another approach is to write a WFF using the logical connective
if-then-else.

Example: For the BDT on the right in slide 13 (leaving the BDT on the left in
slide 13 to you), we can write:

ψB , if p then if q then >
else if r then ⊥

else >
else if q then >

else if r then ⊥
else >

Exercise: the logical connective if-then-else is not directly available in the
syntax of propositional logic. Show how to define if-then-else using the
standard connectives in {→,∧,∨,¬}.
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binary decision trees (BDT), binary decision diagrams (BDD)

I definition of BDT is in first paragraph of Sect 6.1.2 [LCS, page 361]

I definition of BDD in Definition 6.5 [LCS, page 364]

I BDT’s are a special case of BDD’s

I BDD’s allow three optimizations {C1,C2,C3} [LCS, page 363],
which are not allowed in BDT’s
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binary decision trees (BDT’s) vs.
reduced ordered binary decision diagrams (ROBDD’s)

I consider the propositional WFF ϕ
(written as a Boolean function of 6 variables):

ϕ , (x1 + x2) · (x3 + x4) · (x5 + x6)

(ϕ as a function, we follow the convention: “+” instead of “∨” and “·” instead of “∧”)

I if we include all propositional variables along all paths from the root, then
the corresponding BDT(ϕ) has 26 = 64 leaf nodes and 26 − 1 = 63
internal nodes (just too large to draw on this slide!!)

I if BDT(ϕ) is produced using method (A) in slide 9, then its size is not
affected by the ordering of the variables {x1, x2, x3, x4, x5, x6}, it is the
same regardless of the ordering

I relative to a fixed ordering of the variables, e.g.,
x1 < x2 < x3 < x4 < x5 < x6, starting from the root,
BDT(ϕ) is unique (as an unordered binary tree)

Assaf Kfoury, CS 512, Spring 2017, Handout 14 page 17 of 28



binary decision trees (BDT’s) vs.
reduced ordered binary decision diagrams (ROBDD’s)

I applying repeatedly reduction rules {C1,C2,C3} to BDT(ϕ) on slide 17:
C1: merge leaf nodes into two nodes “0” and “1”
C2: remove redundant nodes
C3: merge isomorphic sub-dags
we obtain a ROBDD w.r.t. to the ordering x1 < x2 < x3 < x4 < x5 < x6:

0 1

x3

x1

x4

x5

x6

x2
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binary decision trees (BDT’s) vs.
reduced ordered binary decision diagrams (ROBDD’s)

I however, w.r.t. the (different) ordering x1 < x3 < x5 < x2 < x4 < x6,
applying the 3 reduction rules repeatedly produces a much larger ROBDD:

0 1

x1

x6

x2x2x2x2

x5
x5 x5 x5

x3
x3

x4 x4
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another example: binary decision trees (BDT’s) vs.
reduced ordered binary decision diagrams (ROBDD’s)

I consider the so-called two-bit comparator:

ψ , (x1 ↔ y1) ∧ (x2 ↔ y2)

and the corresponding BDT(ψ), which has 15 internal nodes/decision
points and 16 leaf nodes:

x1

y1 y1

x2 x2 x2 x2

y2 y2 y2 y2 y2 y2 y2 y2

1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1

(I used method (A) in slide 9 to obtain BDT(ψ) from ψ.)
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another example: binary decision trees (BDT’s) vs.
reduced ordered binary decision diagrams (ROBDD’s)

I applying repeatedly reduction rules {C1,C2,C3} to BDT(ψ) on slide 21,
we obtain a ROBDD w.r.t. to the ordering x1 < y1 < x2 < y2, with 6
internal nodes and 2 leaf nodes:

x1

y1 y1

x2

y2 y2

1 0
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another example: binary decision trees (BDT’s) vs.
reduced ordered binary decision diagrams (ROBDD’s)

I however, if we use the ordering x1 < x2 < y1 < y2 for the BDT of the
two-bit comparator ψ, and apply the 3 reduction rules repeatedly, we
obtain a larger ROBDD, with 9 internal nodes and 2 leaf nodes:

x1

x2 x2

y1 y1 y1 y1

y2 y2

1 0
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facts about ROBDD’s – some bad news!
I The n-bit comparator is the following WFF:

ψn , (x1 ↔ y1) ∧ (x2 ↔ y2) ∧ · · · ∧ (xn ↔ yn)

I Fact: If we use the ordering x1 < y1 < · · · < xn < yn, the number of
nodes in ROBDD(ψn) is 3 · n + 2 (linear in n) .

I Fact: If we use the ordering x1 < · · · < xn < y1 < · · · < yn, the
number of nodes in ROBDD(ψn) is 3 · 2n − 1 (exponential in n) .

Exercise: Prove two preceding facts (easy!) .

I Fact: There are propositional WFF’s ϕ whose ROBDD’s have sizes
exponential in

∣∣ϕ∣∣ for all orderings of variables (bad news!) .

Exercise: Prove this fact (not easy!) .

I Fact: Finding an ordering of the variables in an arbitrary ϕ so that the size
of ROBDD(ϕ) is minimized is an NP-hard problem (more bad news!) .

Exercise: Search the Web for a paper proving this fact.
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facts about ROBDD’s – some good news!
I Fact: ROBDD’s are canonical.

Specifically, relative to a fixed ordering of the variables in WFF ϕ
(imposing the same ordering on var in all paths from root to terminals),
ROBDD(ϕ) is a uniquely defined dag.

I Fact: Relative to the same ordering of variables along all paths from the
root to a terminal, the transformation from BDT(ϕ) to ROBDD(ϕ) can be
carried out in linear time.
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facts about ROBDD’s – still some good news!

Exploiting canonicity of ROBDD’s.

I Fact: checking equivalence of ϕ and ψ is the same as checking if
ROBDD(ϕ) and ROBDD(ψ) are equal, w.r.t. same ordering of variables.

I Fact: tautological validity of ϕ can be determined by checking if
ROBDD(ϕ) is equal to the ROBDD with a single terminal label “1”

I Fact: unsatisfiability of ϕ can be determined by checking if ROBDD(ϕ)
is equal to the ROBDD with a single terminal label “0”
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facts about ROBDD’s – more good news!

Exploiting canonicity of ROBDD’s.

I Fact: satisfiability of ϕ can be determined by first checking if ROBDD(ϕ)
is equal to the ROBDD with a single terminal label “0”, in which case ϕ is
unsatisfiable, otherwise . . ..

Exercise: Fill in the missing part in preceding statement (easy!) .

Exercise: determine if ϕ is satisfiable and construct a satisfying
assignment (more interesting!) .

Exercise: determine if ϕ is satisfiable and count the number of satisfying
assignments (still more interesting!) .

I Fact: implication, i.e., ϕ implies ψ, can be determined by checking if
ROBDD(ϕ ∧ ¬ψ) is equal to the ROBDD with a single terminal label “0”

Exercise: Prove this fact (easy!) .
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