CS 512, Spring 2017, Handout 14

Binary Decision Diagrams (BDD's)

Assaf Kfoury

February 26, 2017

background and reading material

- The last chapter, Chapter 6, in the book [LCS] is entirely devoted to BDD's. You should read at least Sections 6.1 and 6.2 .

Sections 6.3 and 6.4 go into topics that will not be covered this semester (symbolic model-checking and mu-calculus), but still cover material that will deepen your knowledge of BDD's, if you can handle them.

My presentation is somewhat different from that in [LCS], especially in regard to explaining connections between propositional WFF's and BDD's.

- Although there is rather little on BDD's, especially from a persepctive stressing formal methods and formal modeling, in textooks (of which I am aware), ${ }^{1}$ there is a lot on BDD's that you can find by searching the Web.

For a good expository account of BDD's and their history, click here .

[^0]
canonical representations of WFF's of propositional logic?

- given a WFF φ of propositional logic, is there a canonical representation of φ, call it φ^{\star}, satisfying the following condition:
for every WFF ψ of propositional logic, φ and ψ are equivalent iff $\varphi^{\star}=\psi^{\star}$??
(" $\varphi^{\star}=\psi^{\star "}$ means φ^{\star} and ψ^{\star} are syntactically the same.)

canonical representations of WFF's of propositional logic?

- given a WFF φ of propositional logic, is there a canonical representation of φ, call it φ^{\star}, satisfying the following condition:
for every WFF ψ of propositional logic, φ and ψ are equivalent iff $\varphi^{\star}=\psi^{\star}$??

```
(" }\mp@subsup{\varphi}{}{\star}=\mp@subsup{\psi}{}{\star}\mathrm{ " means }\mp@subsup{\varphi}{}{\star}\mathrm{ and }\mp@subsup{\psi}{}{\star}\mathrm{ are syntactically the same.)
```

- if yes, hopefully φ^{\star} and ψ^{\star} are obtained by "easy" syntactic transformation, allowing for a "quick" syntactic test $\varphi^{\star}=\psi^{\star}$
- perhaps the CNF's of propositional WFF's can be the desired canonical representations???
- or perhaps the DNF's of propositional WFF's can be the desired canonical representations???

bad news: CNF's and DNF's are not canonical representations

- Two WFF's of propositional logic:

$$
\begin{aligned}
& \varphi \triangleq(x \wedge(y \vee z)) \\
& \psi \triangleq(x \wedge(x \vee y) \wedge(y \vee z))
\end{aligned}
$$

- φ and ψ are both in CNF
- φ and ψ are equivalent
- yet, φ and ψ are syntactically different
- Conclusion:

CNF's are not canonical representations of propositional WFF's.
Same conclusion for DNF's.

truth-table representation of propositional WFF's is canonical

- Canonicity of Truth Tables: For arbitrary propositional WFF's φ_{1} and φ_{2}, φ_{1} and φ_{2} are equivalent iff table $\left(\varphi_{1}\right)=\boldsymbol{\operatorname { t a b l e }}\left(\varphi_{2}\right) .{ }^{2}$ The equivalence of φ_{1} and φ_{2} is therefore reduced to a syntactic test of equality between $\boldsymbol{\operatorname { t a b l e }}\left(\varphi_{1}\right)$ and $\boldsymbol{\operatorname { t a b l e }}\left(\varphi_{2}\right)$.

[^1]
truth-table representation of propositional WFF's is canonical

- Canonicity of Truth Tables: For arbitrary propositional WFF's φ_{1} and φ_{2}, φ_{1} and φ_{2} are equivalent iff $\boldsymbol{\operatorname { t a b l e }}\left(\varphi_{1}\right)=\boldsymbol{\operatorname { t a b l e }}\left(\varphi_{2}\right) .{ }^{2}$
The equivalence of φ_{1} and φ_{2} is therefore reduced to a syntactic test of equality between table $\left(\varphi_{1}\right)$ and $\boldsymbol{t a b l e}\left(\varphi_{2}\right)$.
- Example: for the WFF's $\varphi=(x \wedge(y \vee z))$ and $\psi=(x \wedge(x \vee y) \wedge(y \vee z))$ on slide 5 , $\boldsymbol{\operatorname { t a b l e }}(\varphi)=\boldsymbol{\operatorname { t a b l e }}(\psi)$ is the following truth-table:

x	y	z	φ	ψ
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

- But canonicity of truth tables comes with a heavy price, which is

[^2]
in search of a canonical representation of propositional WFF's

In the next few slides, we show:

- how to transform an arbitrary propositional WFF φ to a binary decision tree (BDT) representing φ,
- how to translate a binary decision tree (BDT) T back to a propositional WFF that T represents,
- how to transform a binary decision tree (BDT) T to an equivalent binary decision diagram (BDD) D.
- how to transform a binary decision diagram (BDD) D to an equivalent reduced ordered binary decision diagram (OBDD) D^{\prime}.

from a propositional WFF to a binary decision tree (BDT)

for propositional WFF φ with atoms in $X=\left\{x_{1}, \ldots, x_{n}\right\}$, two basic approaches:
(A) substitute \perp (left branch) and \top (right branch) for the atoms in X in some order, delaying simplification until all atoms are replaced.
(B) substitute \perp (left branch) and \top (right branch) for the atoms in X in some order, without delaying simplification until all atoms are replaced.

- method (A) produces a full binary tree with exactly $\left(2^{n}-1\right)$ internal nodes and 2^{n} leaf nodes.
- method (B) produces a binary tree with at most $\left(2^{n}-1\right)$ internal nodes and 2^{n} leaf nodes.
- simplification in both methods based on, for arbitrary WFF ψ :

$$
\begin{array}{lll}
\neg \neg \psi \equiv \psi & \psi \vee \neg \psi \equiv \top & \psi \wedge \neg \psi \equiv \perp \\
\top \vee \psi \equiv \top & & \perp \vee \psi \equiv \psi \\
\top \wedge \psi \equiv \psi & \perp \wedge \psi \equiv \perp &
\end{array}
$$

as well as $\left(\psi \rightarrow \psi^{\prime}\right) \equiv\left(\neg \psi \vee \psi^{\prime}\right)$, commutativity of " \backslash " and " \wedge ", etc.

from a propositional WFF to a binary decision tree (BDT)

- Example: applying method (A) to WFF $\varphi \triangleq(q \rightarrow p) \wedge r \rightarrow(p \leftrightarrow r) \wedge q$:

The preceding is a binary tree, labelled in a particular way, but NOT yet a BDT!
from a propositional WFF to a binary decision tree (BDT)

- Example: applying method (B) to WFF $\varphi \triangleq(q \rightarrow p) \wedge r \rightarrow(p \leftrightarrow r) \wedge q$:

The preceding is a binary tree, labelled in a particular way, but NOT yet a BDT!

from a propositional WFF to a binary decision tree (BDT)

Remarks:

- for the same WFF $\varphi \triangleq(q \rightarrow p) \wedge r \rightarrow(p \leftrightarrow r) \wedge q$ in slide 11, method (B) produces different trees for different orderings of the atoms $\{p, q, r\}$. Exercise: apply method (B) to φ using the ordering: (1) r, (2) q, and (3) p.
- the trees returned by methods (A) and (B) give the same complete semantic information about the input WFF φ. for the input $\varphi \triangleq(q \rightarrow p) \wedge r \rightarrow(p \leftrightarrow r) \wedge q$ in slides 10 and 11:

$$
\varphi \text { is not a tautology/valid WFF - some leaf nodes are } \perp
$$

φ is not unsatisfiable/contradictory WFF - some leaf nodes are T
φ is contingent WFF :

- φ is satisfied by any valuation of $\{p, q, r\}$ induced by a path from the root to a leaf node \top
- φ is falsified by any valuation of $\{p, q, r\}$ induced by a path from the root to a leaf node \perp

from a propositional WFF to a binary decision tree (BDT)

- one more step to transform the trees in slides 10 and 11 returned by methods (A) and (B) into what are called binary decision trees (BDT's) :

Note that, starting from the same WFF, we obtained two different BDT's!
And the shape of the BDT on the right changes with the orderings of $\{p, q, r\}!!$

from a binary decision tree (BDT) to a propositional WFF

- one approach is to write a DNF (disjunction of conjuncts) where each conjunct represents the truth assignment along a path from the root of the BDT to a leaf node labelled " 1 ".

Example: We can write the DNF's φ_{A} and φ_{B}, below, for the BDT's on the left and on the right in slide 13, respectively:

$$
\begin{aligned}
& \varphi_{A} \triangleq(\neg p \wedge \neg q \wedge \neg r) \vee(\neg p \wedge q \wedge \neg r) \vee(\neg p \wedge q \wedge r) \vee(p \wedge \neg q \wedge \neg r) \vee(p \wedge q \wedge \neg r) \vee(p \wedge q \wedge r) \\
& \varphi_{B} \triangleq(\neg p \wedge \neg q \wedge \neg r) \vee(\neg p \wedge q) \vee(p \wedge \neg q \wedge \neg r) \vee(p \wedge q)
\end{aligned}
$$

there are 6 conjuncts in φ_{A} and 4 conjuncts in φ_{B}, corresponding to the number of paths in each of the two BDT's leading to a leaf node " 1 ".

from a binary decision tree (BDT) to a propositional WFF

- another approach is to write a WFF using the logical connective if-then-else.

Example: For the BDT on the right in slide 13 (leaving the BDT on the left in slide 13 to you), we can write:

$$
\begin{array}{r}
\psi_{B} \triangleq \text { if } p \text { then if } q \text { then } \top \\
\text { else if } r \text { then } \perp \\
\text { else } \top \\
\text { else if } q \text { then } \top \\
\text { else if } r \text { then } \perp \\
\text { else } \top
\end{array}
$$

Exercise: the logical connective if-then-else is not directly available in the syntax of propositional logic. Show how to define if-then-else using the standard connectives in $\{\rightarrow, \wedge, \vee, \neg\}$.

binary decision trees (BDT), binary decision diagrams (BDD)

- definition of BDT is in first paragraph of Sect 6.1.2 [LCS, page 361]
- definition of BDD in Definition 6.5 [LCS, page 364]
- BDT's are a special case of BDD's
- BDD's allow three optimizations $\{\mathbf{C 1}, \mathbf{C 2}, \mathbf{C 3}\}$ [LCS, page 363], which are not allowed in BDT's

binary decision trees (BDT's) vs.

reduced ordered binary decision diagrams (ROBDD's)

- consider the propositional WFF φ (written as a Boolean function of 6 variables):

$$
\varphi \triangleq\left(x_{1}+x_{2}\right) \cdot\left(x_{3}+x_{4}\right) \cdot\left(x_{5}+x_{6}\right)
$$

(φ as a function, we follow the convention: " + " instead of " \vee " and "." instead of " \wedge ")

- if we include all propositional variables along all paths from the root, then the corresponding $\operatorname{BDT}(\varphi)$ has $2^{6}=64$ leaf nodes and $2^{6}-1=63$ internal nodes (just too large to draw on this slide!!)
- if $\operatorname{BDT}(\varphi)$ is produced using method (A) in slide 9 , then its size is not affected by the ordering of the variables $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$, it is the same regardless of the ordering
- relative to a fixed ordering of the variables, e.g., $x_{1}<x_{2}<x_{3}<x_{4}<x_{5}<x_{6}$, starting from the root, $\operatorname{BDT}(\varphi)$ is unique (as an unordered binary tree)

binary decision trees (BDT's) vs.

reduced ordered binary decision diagrams (ROBDD's)

- applying repeatedly reduction rules $\{\mathbf{C} 1, \mathbf{C} 2, \mathbf{C} 3\}$ to $\mathbf{B D T}(\varphi)$ on slide 17: C1: merge leaf nodes into two nodes " 0 " and " 1 "
C2: remove redundant nodes
C3: merge isomorphic sub-dags
we obtain a ROBDD w.r.t. to the ordering $x_{1}<x_{2}<x_{3}<x_{4}<x_{5}<x_{6}$:

binary decision trees (BDT's) vs.

reduced ordered binary decision diagrams (ROBDD's)

- applying repeatedly reduction rules $\{\mathbf{C} 1, \mathbf{C} 2, \mathbf{C} 3\}$ to $\mathbf{B D T}(\varphi)$ on slide 17: C1: merge leaf nodes into two nodes " 0 " and " 1 "
C2: remove redundant nodes
C3: merge isomorphic sub-dags
we obtain a ROBDD w.r.t. to the ordering $x_{1}<x_{2}<x_{3}<x_{4}<x_{5}<x_{6}$:

binary decision trees (BDT's) vs.

 reduced ordered binary decision diagrams (ROBDD's)- however, w.r.t. the (different) ordering $x_{1}<x_{3}<x_{5}<x_{2}<x_{4}<x_{6}$, applying the 3 reduction rules repeatedly produces a much larger ROBDD:

another example: binary decision trees (BDT's) vs.

 reduced ordered binary decision diagrams (ROBDD's)- consider the so-called two-bit comparator:

$$
\psi \triangleq\left(x_{1} \leftrightarrow y_{1}\right) \wedge\left(x_{2} \leftrightarrow y_{2}\right)
$$

and the corresponding BDT (ψ), which has 15 internal nodes/decision points and 16 leaf nodes:

(I used method (A) in slide 9 to obtain BDT (ψ) from ψ.)

another example: binary decision trees (BDT's) vs.

 reduced ordered binary decision diagrams (ROBDD's)- applying repeatedly reduction rules $\{\mathbf{C 1}, \mathbf{C} 2, \mathbf{C} 3\}$ to $\mathbf{B D T}(\psi)$ on slide 21, we obtain a ROBDD w.r.t. to the ordering $x_{1}<y_{1}<x_{2}<y_{2}$, with 6 internal nodes and 2 leaf nodes:

another example: binary decision trees (BDT's) vs.

 reduced ordered binary decision diagrams (ROBDD's)- however, if we use the ordering $x_{1}<x_{2}<y_{1}<y_{2}$ for the BDT of the two-bit comparator ψ, and apply the 3 reduction rules repeatedly, we obtain a larger ROBDD, with 9 internal nodes and 2 leaf nodes:

facts about ROBDD's - some bad news!

- The n-bit comparator is the following WFF:
$\psi_{n} \triangleq\left(x_{1} \leftrightarrow y_{1}\right) \wedge\left(x_{2} \leftrightarrow y_{2}\right) \wedge \cdots \wedge\left(x_{n} \leftrightarrow y_{n}\right)$
- Fact: If we use the ordering $x_{1}<y_{1}<\cdots<x_{n}<y_{n}$, the number of nodes in $\operatorname{ROBDD}\left(\psi_{n}\right)$ is $3 \cdot n+2$ (linear in n).
- Fact: If we use the ordering $x_{1}<\cdots<x_{n}<y_{1}<\cdots<y_{n}$, the number of nodes in $\operatorname{ROBDD}\left(\psi_{n}\right)$ is $3 \cdot 2^{n}-1$ (exponential in n).

Exercise: Prove two preceding facts (easy!).

- Fact: There are propositional WFF's φ whose ROBDD's have sizes exponential in $|\varphi|$ for all orderings of variables (bad news!).

Exercise: Prove this fact (not easy!).

- Fact: Finding an ordering of the variables in an arbitrary φ so that the size of $\operatorname{ROBDD}(\varphi)$ is minimized is an NP-hard problem (more bad news!).

Exercise: Search the Web for a paper proving this fact.

facts about ROBDD's - some good news!

- Fact: ROBDD's are canonical.

Specifically, relative to a fixed ordering of the variables in WFF φ (imposing the same ordering on var in all paths from root to terminals), $\operatorname{ROBDD}(\varphi)$ is a uniquely defined dag.

- Fact: Relative to the same ordering of variables along all paths from the root to a terminal, the transformation from $\operatorname{BDT}(\varphi)$ to $\operatorname{ROBDD}(\varphi)$ can be carried out in linear time.

facts about ROBDD's - still some good news!

Exploiting canonicity of ROBDD's.

- Fact: checking equivalence of φ and ψ is the same as checking if $\operatorname{ROBDD}(\varphi)$ and $\operatorname{ROBDD}(\psi)$ are equal, w.r.t. same ordering of variables.
- Fact: tautological validity of φ can be determined by checking if $\operatorname{ROBDD}(\varphi)$ is equal to the ROBDD with a single terminal label " 1 "
- Fact: unsatisfiability of φ can be determined by checking if $\operatorname{ROBDD}(\varphi)$ is equal to the ROBDD with a single terminal label " 0 "

facts about ROBDD's - more good news!

Exploiting canonicity of ROBDD's.

- Fact: satisfiability of φ can be determined by first checking if $\operatorname{ROBDD}(\varphi)$ is equal to the ROBDD with a single terminal label " 0 ", in which case φ is unsatisfiable, otherwise

Exercise: Fill in the missing part in preceding statement (easy!)
Exercise: determine if φ is satisfiable and construct a satisfying assignment (more interesting!) .
Exercise: determine if φ is satisfiable and count the number of satisfying assignments (still more interesting!) .

- Fact: implication, i.e., φ implies ψ, can be determined by checking if $\operatorname{ROBDD}(\varphi \wedge \neg \psi)$ is equal to the ROBDD with a single terminal label " 0 " Exercise: Prove this fact (easy!) .

[^0]: ${ }^{1}$ There is a book by Rolf Drechsler and Bernd Becker, Binary Decision Diagrams, Theory and Practice , 1998, written from the perspective of people working on VLSI (Very Large Scale Integration) and the design of electronic circuits. From an algorithmic perspective, there is a very nice section (Section 7.1.4) in Donald Knuth, The Art of Computer Programming, Vol. 4, 2008.

[^1]: ${ }^{2}$ We limit table (φ) to the columns corresponding to the variables in φ together with the last column in the truth-table of φ.

[^2]: ${ }^{2}$ We limit table (φ) to the columns corresponding to the variables in φ together with the last column in the truth-table of φ.

