CS 512, Spring 2017, Handout 15 Syntax of Predicate Logic (aka First-Order Logic)

Assaf Kfoury

March 14, 2017

Assaf Kfoury, CS 512, Spring 2017, Handout 15

page 1 of 53

for all x, if x is a bird then x has wings

for all x, if x has wings then x can fly

Coco is a bird

Coco has wings

Coco's mother can fly

for all x , if x is a bird then x has wings	$\forall x \ (B(x) \ \rightarrow \ W(x))$
for all x, if x has wings then x can fly	$\forall x (W(x) \rightarrow F(x))$
Coco is a bird	$B(\mathbf{C})$
Coco has wings	$W(\mathbf{C})$
Coco 's <i>mother</i> can fly	$F(m(\mathbf{C}))$

for all x , if x is a bird then x has wings	$\forall x \ (B(x) \ \rightarrow \ W(x))$
for all x, if x has wings then x can fly	$\forall x (W(x) \rightarrow F(x))$
Coco is a bird	$B(\mathbf{C})$
Coco has wings	$W(\mathbf{C})$
Coco 's <i>mother</i> can fly	$F(m(\mathbf{C}))$
it is not the case that for all $x \dots$	$\neg(\forall x \ (B(x) \rightarrow W(x)))$

for all <i>x</i> , if <i>x</i> is a bird then <i>x</i> has wings	$\forall x \ (B(x) \ \rightarrow \ W(x))$
for all <i>x</i> , if <i>x</i> has wings then <i>x</i> can fly	$\forall x (W(x) \rightarrow F(x))$
Coco is a bird	$B(\mathbf{C})$
Coco has wings	$W(\mathbf{C})$
Coco 's <i>mother</i> can fly	$F(m(\mathbf{C}))$
it is not the case that for all $x \dots$	$\neg(\forall x \ (B(x) \ \rightarrow \ W(x)))$
there exists an x such that	$\exists x \ (B(x) \ \land \ \neg W(x))$

Assaf Kfoury, CS 512, Spring 2017, Handout 15

vocabulary (a.k.a. similarity type, a.k.a. signature):

► terms:

vocabulary (a.k.a. similarity type, a.k.a. signature):

set \mathcal{P} of **predicate** symbols, each of arity $n \ge 0$

► terms:

vocabulary (a.k.a. similarity type, a.k.a. signature):

set \mathcal{P} of **predicate** symbols, set \mathcal{F} of **function** symbols, each of arity $n \ge 1$

each of arity $n \ge 0$

terms:

vocabulary (a.k.a. similarity type, a.k.a. signature):

set \mathcal{P} of **predicate** symbols, set \mathcal{F} of **function** symbols, set \mathcal{C} of **constant** symbols, each of arity $n \ge 0$ each of arity $n \ge 1$ (a.k.a. functions of arity = 0)

terms:

vocabulary (a.k.a. similarity type, a.k.a. signature):

set \mathcal{P} of **predicate** symbols, set \mathcal{F} of **function** symbols, set \mathcal{C} of **constant** symbols, each of arity $n \ge 0$ each of arity $n \ge 1$ (a.k.a. functions of arity = 0)

terms:

a variable x is a term

vocabulary (a.k.a. similarity type, a.k.a. signature):

set \mathcal{P} of **predicate** symbols, set \mathcal{F} of **function** symbols, set \mathcal{C} of **constant** symbols, each of arity $n \ge 0$ each of arity $n \ge 1$ (a.k.a. functions of arity = 0)

terms:

a variable x is a term a constant $c \in C$ is a term

vocabulary (a.k.a. similarity type, a.k.a. signature):

set \mathcal{P} of **predicate** symbols, set \mathcal{F} of **function** symbols, set \mathcal{C} of **constant** symbols, each of arity $n \ge 0$ each of arity $n \ge 1$ (a.k.a. functions of arity = 0)

terms:

a variable *x* is a term a constant $c \in C$ is a term if t_1, \ldots, t_n are terms and $f \in F$ is *n*-ary, $f(t_1, \ldots, t_n)$ is a term

vocabulary (a.k.a. similarity type, a.k.a. signature):

set \mathcal{P} of **predicate** symbols, set \mathcal{F} of **function** symbols, set \mathcal{C} of **constant** symbols,

each of arity $n \ge 0$ each of arity $n \ge 1$ (a.k.a. functions of arity = 0)

terms:

a variable *x* is a term a constant $c \in C$ is a term if t_1, \ldots, t_n are terms and $f \in \mathcal{F}$ is *n*-ary, $f(t_1, \ldots, t_n)$ is a term

as a BNF definition:

 $t ::= x \mid c \mid f(t, \ldots, t)$

well-formed formulas:

if t_1, \ldots, t_n are terms and $P \in \mathcal{P}$ has arity $n \ge 0$, then $P(t_1, \ldots, t_n)$ is a WFF (a.k.a. **atomic** WFF)

if t_1, t_2 are terms, then $t_1 \doteq t_2$ is a WFF (a.k.a. **atomic** WFF)

well-formed formulas:

if t_1, \ldots, t_n are terms and $P \in \mathcal{P}$ has arity $n \ge 0$, then $P(t_1, \ldots, t_n)$ is a WFF (a.k.a. **atomic** WFF)

if t_1, t_2 are terms, then $t_1 \doteq t_2$ is a WFF (a.k.a. **atomic** WFF)

if φ is a WFF, then so is $\neg \varphi$

well-formed formulas:

if t_1, \ldots, t_n are terms and $P \in \mathcal{P}$ has arity $n \ge 0$, then $P(t_1, \ldots, t_n)$ is a WFF (a.k.a. **atomic** WFF)

```
if t_1, t_2 are terms,
then t_1 \doteq t_2 is a WFF (a.k.a. atomic WFF)
```

if φ is a WFF, then so is $\neg \varphi$

```
if \varphi and \psi are WFF's,
then so are (\varphi \land \psi), (\varphi \lor \psi), and (\varphi \rightarrow \psi)
```

well-formed formulas:

if t_1, \ldots, t_n are terms and $P \in \mathcal{P}$ has arity $n \ge 0$, then $P(t_1, \ldots, t_n)$ is a WFF (a.k.a. **atomic** WFF)

```
if t_1, t_2 are terms,
then t_1 \doteq t_2 is a WFF (a.k.a. atomic WFF)
```

```
if \varphi is a WFF, then so is \neg\varphi
```

```
 \begin{array}{l} \mbox{if } \varphi \mbox{ and } \psi \mbox{ are WFF's,} \\ \mbox{then so are } (\varphi \wedge \psi), \, (\varphi \lor \psi), \, \mbox{and } (\varphi \to \psi) \end{array}
```

```
if \varphi is a WFF and x is a variable,
then so are (\forall x \ \varphi) and (\exists x \ \varphi) WFF's
```

well-formed formulas:

if t_1, \ldots, t_n are terms and $P \in \mathcal{P}$ has arity $n \ge 0$, then $P(t_1, \ldots, t_n)$ is a WFF (a.k.a. **atomic** WFF)

```
if t_1, t_2 are terms,
then t_1 \doteq t_2 is a WFF (a.k.a. atomic WFF)
```

```
if \varphi is a WFF, then so is \neg \varphi
```

```
if \varphi and \psi are WFF's,
then so are (\varphi \land \psi), (\varphi \lor \psi), and (\varphi \rightarrow \psi)
```

```
if \varphi is a WFF and x is a variable,
then so are (\forall x \ \varphi) and (\exists x \ \varphi) WFF's
```

as a BNF definition:

 $\varphi ::= P(t_1, \ldots, t_n) \mid t_1 \doteq t_2 \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\forall x \varphi) \mid (\exists x \varphi)$

well-formed formulas:

if t_1, \ldots, t_n are terms and $P \in \mathcal{P}$ has arity $n \ge 0$, then $P(t_1, \ldots, t_n)$ is a WFF (a.k.a. **atomic** WFF)

```
if t_1, t_2 are terms,
then t_1 \doteq t_2 is a WFF (a.k.a. atomic WFF)
```

```
if \varphi is a WFF, then so is \neg \varphi
```

```
if \varphi and \psi are WFF's,
then so are (\varphi \land \psi), (\varphi \lor \psi), and (\varphi \rightarrow \psi)
```

```
if \varphi is a WFF and x is a variable,
then so are (\forall x \ \varphi) and (\exists x \ \varphi) WFF's
```

as a BNF definition:

 $\varphi ::= P(t_1, \ldots, t_n) \mid t_1 \doteq t_2 \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\forall x \varphi) \mid (\exists x \varphi)$

are all WFF's of propositional logic WFF's of predicate logic ???

• a variable x may occur free or bound in a WFF φ

- a variable x may occur free or bound in a WFF φ
- if x is bound in φ, then there are ≥ 0 bound occurrences of x and ≥ 1 binding occurrences of x in φ

- a variable x may occur free or bound in a WFF φ
- If x is bound in φ, then there are ≥ 0 bound occurrences of x and ≥ 1 binding occurrences of x in φ
- ▶ a **binding** occurrence of *x* is of the form " $\forall x$ " or " $\exists x$ "

- a variable x may occur free or bound in a WFF φ
- If x is bound in φ, then there are ≥ 0 bound occurrences of x and ≥ 1 binding occurrences of x in φ
- ▶ a **binding** occurrence of *x* is of the form " $\forall x$ " or " $\exists x$ "
- If a binding occurrence of x occurs as (Qx φ) where Q ∈ {∀, ∃}, then φ is the scope of the binding occurrence

- a variable x may occur free or bound in a WFF φ
- If x is bound in φ, then there are ≥ 0 bound occurrences of x and ≥ 1 binding occurrences of x in φ
- ▶ a **binding** occurrence of *x* is of the form " $\forall x$ " or " $\exists x$ "
- If a binding occurrence of x occurs as (Qx φ) where Q ∈ {∀,∃}, then φ is the scope of the binding occurrence
- **•** scopes of two binding occurrences " $\mathbf{Q} x$ " and " $\mathbf{Q}' x'$ " may be

disjoint:
$$\cdots$$
 (**Q** x \cdots) \cdots (**Q**' x' \cdots) \cdots

- a variable x may occur free or bound in a WFF φ
- If x is bound in φ, then there are ≥ 0 bound occurrences of x and ≥ 1 binding occurrences of x in φ
- ▶ a **binding** occurrence of *x* is of the form " $\forall x$ " or " $\exists x$ "
- If a binding occurrence of x occurs as (Qx φ) where Q ∈ {∀,∃}, then φ is the scope of the binding occurrence
- **•** scopes of two binding occurrences " $\mathbf{Q} x$ " and " $\mathbf{Q}' x'$ " may be

disjoint:
$$\cdots$$
 ($\mathbf{Q} x \underbrace{\cdots}) \cdots (\mathbf{Q}' x' \underbrace{\cdots}) \cdots$) \cdots
or nested: \cdots ($\mathbf{Q} x \underbrace{\cdots} (\mathbf{Q}' x' \underbrace{\cdots}) \cdots$) \cdots

- a variable x may occur free or bound in a WFF φ
- If x is bound in φ, then there are ≥ 0 bound occurrences of x and ≥ 1 binding occurrences of x in φ
- ▶ a **binding** occurrence of *x* is of the form " $\forall x$ " or " $\exists x$ "
- If a binding occurrence of x occurs as (Qx φ) where Q ∈ {∀,∃}, then φ is the scope of the binding occurrence
- **•** scopes of two binding occurrences " $\mathbf{Q} x$ " and " $\mathbf{Q}' x'$ " may be

disjoint:
$$\cdots$$
 ($\mathbf{Q} x \underbrace{\cdots}) \cdots (\mathbf{Q}' x' \underbrace{\cdots}) \cdots$) \cdots
or nested: \cdots ($\mathbf{Q} x \underbrace{\cdots} (\mathbf{Q}' x' \underbrace{\cdots}) \cdots$) \cdots

but cannot overlap

• the set of **free variables** in terms *t* and WFF's φ :

$$FV(t) = \begin{cases} \emptyset & \text{if } t = c \\ \{x\} & \text{if } t = x \\ FV(t_1) \cup \dots \cup FV(t_n) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

$$FV(\varphi) = \begin{cases} FV(t_1) \cup \dots \cup FV(t_n) & \text{if } \varphi = P(t_1, \dots, t_n) \\ FV(t_1) \cup FV(t_2) & \text{if } \varphi = (t_1 \doteq t_2) \\ FV(\varphi') & \text{if } \varphi = \neg \varphi' \\ FV(\varphi') & \text{if } \varphi = (\varphi_1 \star \varphi_2), \star \in \{\wedge, \lor, \rightarrow\} \\ FV(\varphi') - \{x\} & \text{if } \varphi = (\mathbf{Q}x \ \varphi') \text{ and } \mathbf{Q} \in \{\forall, \exists\} \end{cases}$$

• the set of **free variables** in terms *t* and WFF's φ :

$$FV(t) = \begin{cases} \emptyset & \text{if } t = c \\ \{x\} & \text{if } t = x \\ FV(t_1) \cup \dots \cup FV(t_n) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

$$FV(\varphi) = \begin{cases} FV(t_1) \cup \dots \cup FV(t_n) & \text{if } \varphi = P(t_1, \dots, t_n) \\ FV(t_1) \cup FV(t_2) & \text{if } \varphi = (t_1 \doteq t_2) \\ FV(\varphi') & \text{if } \varphi = \neg \varphi' \\ FV(\varphi_1) \cup FV(\varphi_2) & \text{if } \varphi = (\varphi_1 \star \varphi_2), \star \in \{\wedge, \vee, \rightarrow\} \\ FV(\varphi') - \{x\} & \text{if } \varphi = (\mathbf{Q}x \ \varphi') \text{ and } \mathbf{Q} \in \{\forall, \exists\} \end{cases}$$

► assumption: every variable x has ≤ 1 binding occurrence in any WFF (is this realistic?)

this assumption is not essential, but without it, a variable may occur both free and bound in the same WFF.

Assaf Kfoury, CS 512, Spring 2017, Handout 15

• φ is closed iff $FV(\varphi) = \emptyset$,

- φ is closed iff $FV(\varphi) = \emptyset$,
- how to satisfy the assumption: every variable x has ≤ 1 binding occurrence in any WFF,

- φ is closed iff $FV(\varphi) = \emptyset$,
- how to satisfy the assumption: every variable x has ≤ 1 binding occurrence in any WFF,
- consider a WFF φ (not satisfying the assumption), say:

$$\varphi = \cdots \left(\mathbf{Q}_1 x \left(\cdots x \cdots \right) \right) \cdots \left(\mathbf{Q}_2 x \left(\cdots x \cdots \right) \right) \cdots$$

where $\mathbf{Q}_1, \mathbf{Q}_2 \in \{ \forall, \exists \}$,

is φ equivalent to:

$$\varphi' = \cdots \left(\mathbf{Q}_1 x \left(\cdots x \cdots \right) \right) \cdots \left(\mathbf{Q}_2 x' \left(\cdots x' \cdots \right) \cdots \right) ??$$

- φ is closed iff $FV(\varphi) = \emptyset$,
- how to satisfy the assumption: every variable x has ≤ 1 binding occurrence in any WFF,
- consider a WFF φ (not satisfying the assumption), say:

$$\varphi = \cdots \left(\mathbf{Q}_1 x \left(\cdots x \cdots \right) \right) \cdots \left(\mathbf{Q}_2 x \left(\cdots x \cdots \right) \right) \cdots$$

where $\mathbf{Q}_1, \mathbf{Q}_2 \in \{ \forall, \exists \},$

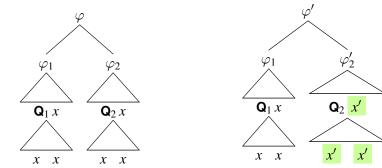
is φ equivalent to:

$$\varphi' = \cdots \left(\mathbf{Q}_1 x \left(\cdots x \cdots \right) \right) \cdots \left(\mathbf{Q}_2 x' \left(\cdots x' \cdots \right) \cdots \right) ??$$

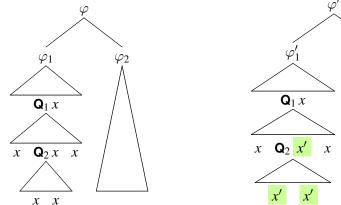
• yes, φ and φ' are equivalent

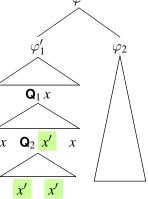
Exercise: define the algorithm to transform φ into φ'

renaming binding occurrences " $\mathbf{Q}_1 x$ " and " $\mathbf{Q}_2 x$ " in **disjoint** scopes



renaming binding occurrences " $\mathbf{Q}_1 x$ " and " $\mathbf{Q}_2 x$ " in **nested** scopes





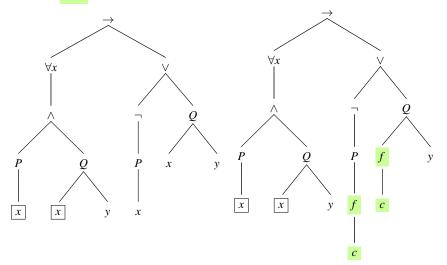
substitute f(c) for y in φ : $\varphi[f(c)/y]$ (also $\varphi[y/f(c)]$ or $\varphi[y := f(c)]$)

substitution examples in $\varphi = (\forall x (P(x) \land Q(x, y))) \rightarrow (\neg P(x) \lor Q(x, y))$ substitute f(c) for y in φ : $\varphi[f(c)/y]$ (also $\varphi[y/f(c)]$ or $\varphi[y := f(c)]$) $\forall x$ $\forall x$ x x y x x х х х x y С

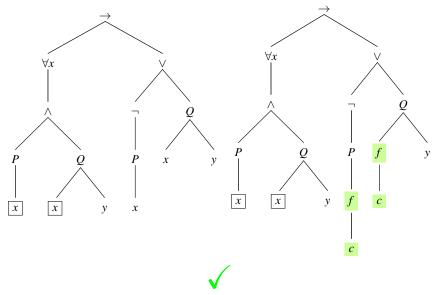
substitution examples in $\varphi = (\forall x (P(x) \land Q(x, y))) \rightarrow (\neg P(x) \lor Q(x, y))$ substitute f(c) for y in φ : $\varphi[f(c)/y]$ (also $\varphi[y/f(c)]$ or $\varphi[y := f(c)]$) $\forall x$ $\forall x$ x x y x х x x х x y С

substitute f(c) for x in φ : $\varphi[f(c)/x]$

substitute f(c) for x in φ : $\varphi[f(c)/x]$

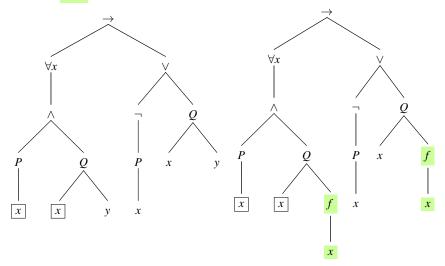


substitute f(c) for x in φ : $\varphi[f(c)/x]$

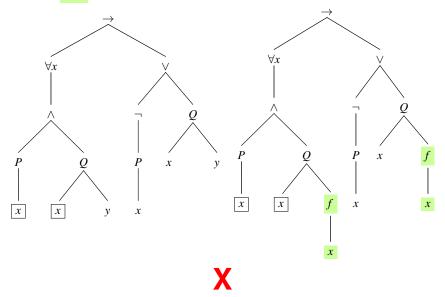


substitute f(x) for y in φ : $\varphi[f(x)/y]$

substitute f(x) for y in φ : $\varphi[f(x)/y]$



substitute f(x) for y in φ : $\varphi[f(x)/y]$



• given: term t, WFF φ , variable x, term u

• given: term t, WFF φ , variable x, term u

$$t[u/x] = \begin{cases} c & \text{if } t = c \\ u & \text{if } t = x \\ y & \text{if } t = y \text{ and } y \neq x \\ f(t_1[u/x], \dots, t_n[u/x]) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

• given: term t, WFF φ , variable x, term u

$$t[u/x] = \begin{cases} c & \text{if } t = c \\ u & \text{if } t = x \\ y & \text{if } t = y \text{ and } y \neq x \\ f(t_1[u/x], \dots, t_n[u/x]) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$
$$\begin{pmatrix} P(t_1[u/x], \dots, t_n[u/x]) & \text{if } \varphi = P(t_1, \dots, t_n) \\ (t_1[u/x] \doteq t_2[u/x]) & \text{if } \varphi = (t_2 \doteq t_2) \\ \neg(\varphi'[u/x]) & \text{if } \varphi = \neg \varphi' \\ \varphi_1[u/x] \star \varphi_2[u/x] & \text{if } \varphi = \varphi_1 \star \varphi_2 \text{ and} \\ \star \in \{\wedge, \lor, \rightarrow\} \\ \mathbf{Q}y (\varphi'[u/x])) & \text{if } \varphi = \mathbf{Q}y \varphi', \\ \mathbf{Q}y (\varphi'[u/x])) & \text{if } \varphi = \mathbf{Q}y \varphi', \\ \mathbf{Q}y (\varphi' & \text{if } \varphi = \mathbf{Q}y \varphi', \\ \mathbf{Q}y (\varphi' & \text{if } \varphi = \mathbf{Q}y \varphi', \\ \mathbf{Q} \in \{\forall, \exists\}, x \neq y, \text{ and} \\ u \text{ is substitutable for } x \text{ in } \varphi \\ \mathbf{Q}y (\varphi' & \text{if } \varphi = \mathbf{Q}y \varphi', \\ \mathbf{Q} \in \{\forall, \exists\}, x = y \end{cases}$$