CS 512, Spring 2017, Handout 16 Predicate Logic: Proof Rules of Natural Deduction

Assaf Kfoury

March 14, 2017

proof rules for equality

proof rules for equality

- equality introduction

$$
\overline{t \doteq t} \doteq \dot{=}
$$

proof rules for equality

- equality introduction

$$
\overline{t \doteq t} \doteq \mathrm{i}
$$

- equality elimination

$$
\frac{t_{1} \doteq t_{2} \quad \varphi\left[t_{1} / x\right]}{\varphi\left[t_{2} / x\right]} \doteq \mathrm{e}
$$

formal proof: "三" is symmetric

formal proof: "三" is symmetric

1	$u_{1} \doteq u_{2}$	premise
2	$u_{1} \doteq u_{1}$	$\doteq \mathrm{i}$
3	$u_{2} \doteq u_{1}$	$\doteq \mathrm{e} 1,2$

formal proof: "三" is symmetric

1	$u_{1} \doteq u_{2}$	premise
2	$u_{1} \doteq u_{1}$	$\doteq \mathrm{i}$
3	$u_{2} \doteq u_{1}$	$\doteq \mathrm{e} 1,2$

What above corresponds to the WFF φ in the use of rule $\doteq \mathrm{e}$?

formal proof: "三" is symmetric

1

$$
u_{1} \doteq u_{2}
$$

premise

2

$$
\begin{aligned}
& u_{1} \doteq u_{1} \\
& u_{2} \doteq u_{1}
\end{aligned}
$$

$$
\doteq \mathrm{i}
$$

$$
\doteq \mathrm{e} 1,2
$$

What above corresponds to the WFF φ in the use of rule $\doteq \mathrm{e}$?
Answer: " $x \doteq u_{1}$ " corresponds to φ in the rule $\doteq \mathrm{e}$, so that

$$
\text { " } u_{1} \doteq u_{1} \text { " corresponds to } \varphi\left[u_{1} / x\right] \& \text { " } u_{2} \doteq u_{1} \text { " corresponds to } \varphi\left[u_{2} / x\right]
$$

formal proof: "三=" is symmetric

1

$$
u_{1} \doteq u_{2}
$$

premise

2

$$
\begin{aligned}
& u_{1} \doteq u_{1} \\
& u_{2} \doteq u_{1}
\end{aligned}
$$

$$
\doteq \mathrm{i}
$$

$$
\doteq \mathrm{e} 1,2
$$

What above corresponds to the WFF φ in the use of rule $\doteq \mathrm{e}$?
Answer: " $x \doteq u_{1}$ " corresponds to φ in the rule $\doteq \mathrm{e}$, so that

$$
\text { " } u_{1} \doteq u_{1} \text { " corresponds to } \varphi\left[u_{1} / x\right] \& \text { " } u_{2} \doteq u_{1} \text { " corresponds to } \varphi\left[u_{2} / x\right]
$$

We have formally proved

$$
u_{1} \doteq u_{2} \vdash u_{2} \doteq u_{1}
$$

formal proof: "三" is symmetric

1

$$
u_{1} \doteq u_{2}
$$

2

$$
u_{1} \doteq u_{1}
$$

What above corresponds to the WFF φ in the use of rule $\doteq \mathrm{e}$?
Answer: " $x \doteq u_{1}$ " corresponds to φ in the rule $\doteq \mathrm{e}$, so that

$$
\text { " } u_{1} \doteq u_{1} \text { " corresponds to } \varphi\left[u_{1} / x\right] \& \text { " } u_{2} \doteq u_{1} \text { " corresponds to } \varphi\left[u_{2} / x\right]
$$

We have formally proved
$u_{1} \doteq u_{2} \vdash u_{2} \doteq u_{1}$

We can therefore use as a derived proof rule

$$
\frac{t_{1} \doteq t_{2}}{t_{2} \doteq t_{1}} \doteq \text { symmetric }
$$

formal proof: "三" is transitive

formal proof: "三" is transitive

1	$u_{2} \doteq u_{3}$	premise
2	$u_{1} \doteq u_{2}$	premise
3	$u_{1} \doteq u_{3}$	$\doteq \mathrm{e} 1,2$

formal proof: "三" is transitive

1

$$
u_{2} \doteq u_{3}
$$

premise
$2 \quad u_{1}=u_{2}$ premise
$u_{1} \doteq u_{3}$
$\doteq \mathrm{e} 1,2$

What above corresponds to the WFF φ in the use of rule $\doteq \mathrm{e}$?

formal proof: "三" is transitive

1

$$
u_{2} \doteq u_{3}
$$

premise
$2 \quad u_{1}=u_{2}$ premise
$\dot{=} 1,2$

What above corresponds to the WFF φ in the use of rule $\doteq \mathrm{e}$?
Answer: " $u_{1} \doteq x$ " corresponds to φ in the rule $\doteq \mathrm{e}$, so that

$$
\text { " } u_{1} \doteq u_{3} \text { " corresponds to } \varphi\left[u_{3} / x\right] \text { \& " } u_{1} \doteq u_{2} \text { " corresponds to } \varphi\left[u_{2} / x\right]
$$

formal proof: "三" is transitive

1

$$
u_{2} \doteq u_{3}
$$

premise
${ }_{2} \quad u_{1} \doteq u_{2}$ premise
$\dot{=} 1,2$

What above corresponds to the WFF φ in the use of rule $\doteq \mathrm{e}$?
Answer: " $u_{1} \doteq x$ " corresponds to φ in the rule $\doteq \mathrm{e}$, so that

$$
\text { " } u_{1} \doteq u_{3} \text { " corresponds to } \varphi\left[u_{3} / x\right] \text { \& " } u_{1} \doteq u_{2} \text { " corresponds to } \varphi\left[u_{2} / x\right]
$$

We have formally proved
$u_{1} \doteq u_{2}, u_{2} \doteq u_{3} \vdash u_{1} \doteq u_{3}$

formal proof: "三" is transitive

1

$$
u_{2} \doteq u_{3}
$$

premise

2

$$
u_{1} \doteq u_{2}
$$

What above corresponds to the WFF φ in the use of rule $\doteq \mathrm{e}$?
Answer: " $u_{1} \doteq x$ " corresponds to φ in the rule $\doteq \mathrm{e}$, so that

$$
\text { " } u_{1} \doteq u_{3} \text { " corresponds to } \varphi\left[u_{3} / x\right] \text { \& " } u_{1} \doteq u_{2} \text { " corresponds to } \varphi\left[u_{2} / x\right]
$$

We have formally proved
$u_{1} \doteq u_{2}, u_{2} \doteq u_{3} \vdash u_{1} \doteq u_{3}$

We can therefore use as a derived proof rule

$$
\frac{t_{1} \doteq t_{2} \quad t_{2} \doteq t_{3}}{t_{1} \doteq t_{3}}
$$

proof rules for universal quantification

proof rules for universal quantification

- universal quantifier elimination

$$
\frac{\forall x \varphi}{\varphi[t / x]} \forall x \mathrm{e}
$$

(usual assumption: t is substitutable for x)

proof rules for universal quantification

- universal quantifier elimination

$$
\frac{\forall x \varphi}{\varphi[t / x]} \forall x \mathrm{e}
$$

(usual assumption: t is substitutable for x)

- universal quantifier introduction

proof rules for existential quantification

proof rules for existential quantification

- existential quantifier introduction
$\frac{\varphi[t / x]}{\exists x \varphi} \exists x$ i

proof rules for existential quantification

- existential quantifier introduction

$$
\frac{\varphi[t / x]}{\exists x \varphi} \exists x \text { i }
$$

- existential quantifier elimination

χ
(x_{0} cannot occur outside its box, in particular, it cannot occur in χ)

proof rules for existential quantification

- existential quantifier introduction

$$
\frac{\varphi[t / x]}{\exists x \varphi} \exists x \text { i }
$$

- existential quantifier elimination

(x_{0} cannot occur outside its box, in particular, it cannot occur in χ)
- Note carefully:

Rule ($\exists x$ e) introduces both a fresh variable and an assumption.
example: $\forall x \forall y \varphi(x, y) \vdash \forall y \forall x \varphi(x, y)$

	${ }_{1} \quad \forall x \forall y \varphi(x, y)$	premise
y_{0}	2	fresh y_{0}
x_{0}	3	fresh x_{0}
	$4 \quad \forall y \varphi\left(x_{0}, y\right)$	$\forall x \mathrm{e}, 1$
	$5 \varphi\left(x_{0}, y_{0}\right)$	$\forall x$ e, 4
	$6 \quad \forall x \varphi\left(x, y_{0}\right)$	$\forall x$ i, 5
	$7 \quad \forall y \forall x \varphi(x, y)$	$\forall y$ i, 6

example: $\forall x(P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)$

| 1 | $\forall x(P(x) \rightarrow Q(x))$ |
| :--- | :--- |\quad premise

x_{0}	3	
		fresh x_{0}
	P	$P\left(x_{0}\right) \rightarrow Q\left(x_{0}\right)$
	$\forall x$ e, 1	
	$P\left(x_{0}\right)$	$\forall x$ e, 2
6	$Q\left(x_{0}\right)$	$\rightarrow \mathrm{e}, 4,5$
	$\forall x Q(x)$	$\forall x$ i, 3-6

example: $\exists x(\varphi(x) \vee \psi(x)) \vdash \exists x \varphi(x) \vee \exists x \psi(x)$

example: $\exists x(\varphi(x) \vee \psi(x)) \vdash \exists x \varphi(x) \vee \exists x \psi(x)$

$\exists x(\varphi(x) \vee \psi(x))$			premise
x_{0}			fresh x_{0}
	$\varphi\left(x_{0}\right) \vee \psi\left(x_{0}\right)$		assumption
4	$4 \varphi\left(x_{0}\right)$	$\psi\left(x_{0}\right)$	assumption
	${ }^{\prime} \exists x \varphi(x)$	$\exists x \psi(x)$	$\exists x \mathrm{i}, 4$
6	$6 \exists x \varphi(x) \vee \exists x \psi(x)$	$\exists x \varphi(x) \vee \exists x \psi(x)$	$\mathrm{V}, 5$
7	$\exists x \varphi(x) \vee \exists x \psi(x)$		Ve, 3, 4-6
8	\% $\exists x \varphi(x) \vee \exists x \psi(x)$		$\exists x$ e, 1, 2-7

example: $\exists x \varphi(x) \vee \exists x \psi(x) \vdash \exists x(\varphi(x) \vee \psi(x))$

example: $\exists x \varphi(x) \vee \exists x \psi(x) \vdash \exists x(\varphi(x) \vee \psi(x))$

- Yes, this is a derivable sequent - left to you.

example: $\exists x \varphi(x) \vee \exists x \psi(x) \vdash \exists x(\varphi(x) \vee \psi(x))$

- Yes, this is a derivable sequent - left to you.
- Hence, $\exists x \varphi(x) \vee \exists x \psi(x) \dashv \vdash \exists x(\varphi(x) \vee \psi(x))$

example: $\exists x(\varphi(x) \wedge \psi(x)) \vdash \exists x \varphi(x) \wedge \exists x \psi(x)$

example: $\exists x(\varphi(x) \wedge \psi(x)) \vdash \exists x \varphi(x) \wedge \exists x \psi(x)$

- Yes, this is a derivable sequent - similar to the formal proof of $\exists x(\varphi(x) \vee \psi(x)) \vdash \exists x \varphi(x) \vee \exists x \psi(x)$

example: $\exists x(\varphi(x) \wedge \psi(x)) \vdash \exists x \varphi(x) \wedge \exists x \psi(x)$

- Yes, this is a derivable sequent - similar to the formal proof of $\exists x(\varphi(x) \vee \psi(x)) \vdash \exists x \varphi(x) \vee \exists x \psi(x)$
- example: $\exists x \varphi(x) \wedge \exists x \psi(x) \vdash \exists x(\varphi(x) \wedge \psi(x))$??
example: $\exists x(\varphi(x) \wedge \psi(x)) \vdash \exists x \varphi(x) \wedge \exists x \psi(x)$
- Yes, this is a derivable sequent - similar to the formal proof of $\exists x(\varphi(x) \vee \psi(x)) \vdash \exists x \varphi(x) \vee \exists x \psi(x)$
- example: $\exists x \varphi(x) \wedge \exists x \psi(x) \vdash \exists x(\varphi(x) \wedge \psi(x))$?? No, this is not a derivable sequent
example: $\exists x(\varphi(x) \wedge \psi(x)) \vdash \exists x \varphi(x) \wedge \exists x \psi(x)$
- Yes, this is a derivable sequent - similar to the formal proof of $\exists x(\varphi(x) \vee \psi(x)) \vdash \exists x \varphi(x) \vee \exists x \psi(x)$
- example: $\exists x \varphi(x) \wedge \exists x \psi(x) \vdash \exists x(\varphi(x) \wedge \psi(x))$?? No, this is not a derivable sequent
Find an interpretation (a "model") where $\exists x \varphi(x) \wedge \exists x \psi(x)$ is true, but $\exists x(\varphi(x) \wedge \psi(x))$ is false
example: $\exists x(\varphi(x) \wedge \psi(x)) \vdash \exists x \varphi(x) \wedge \exists x \psi(x)$
- Yes, this is a derivable sequent - similar to the formal proof of $\exists x(\varphi(x) \vee \psi(x)) \vdash \exists x \varphi(x) \vee \exists x \psi(x)$
- example: $\exists x \varphi(x) \wedge \exists x \psi(x) \vdash \exists x(\varphi(x) \wedge \psi(x))$?? No, this is not a derivable sequent
Find an interpretation (a "model") where $\exists x \varphi(x) \wedge \exists x \psi(x)$ is true, but $\exists x(\varphi(x) \wedge \psi(x))$ is false
- Hence, $\exists x(\varphi(x) \wedge \psi(x))$ A $\vdash \exists x \varphi(x) \wedge \exists x \psi(x)$
example: $\exists x(\varphi(x) \wedge \psi(x)) \vdash \exists x \varphi(x) \wedge \exists x \psi(x)$
- Yes, this is a derivable sequent - similar to the formal proof of $\exists x(\varphi(x) \vee \psi(x)) \vdash \exists x \varphi(x) \vee \exists x \psi(x)$
- example: $\exists x \varphi(x) \wedge \exists x \psi(x) \vdash \exists x(\varphi(x) \wedge \psi(x))$?? No, this is not a derivable sequent
Find an interpretation (a "model") where $\exists x \varphi(x) \wedge \exists x \psi(x)$ is true, but $\exists x(\varphi(x) \wedge \psi(x))$ is false
- Hence, $\exists x(\varphi(x) \wedge \psi(x))$ A $\vdash \exists x \varphi(x) \wedge \exists x \psi(x)$

REMEMBER! To show that a WFF is NOT derivable, it is generally easier to find an interpretation where the WFF is not satisfiable.

example: $\exists x P(x), \forall x \forall y(P(x) \rightarrow Q(y)) \vdash \forall y Q(y)$

example: $\exists x P(x), \forall x \forall y(P(x) \rightarrow Q(y)) \vdash \forall y Q(y)$

quantifier equivalences

Theorem

$$
\begin{array}{lll}
\neg \forall x \varphi & \dashv \vdash & \exists x \neg \varphi \\
\neg \exists x \varphi & \dashv \vdash & \forall x \neg \varphi
\end{array}
$$

quantifier equivalences

Theorem

$$
\begin{array}{lll}
\neg \forall x \varphi & \dashv \vdash & \exists x \neg \varphi \\
\neg \exists x \varphi & \dashv \vdash & \forall x \neg \varphi
\end{array}
$$

- Assume x is not free in ψ :

quantifier equivalences

Theorem

$$
\begin{array}{lll}
\neg \forall x \varphi & \dashv \vdash & \exists x \neg \varphi \\
\neg \exists x \varphi & \dashv \vdash & \forall x \neg \varphi
\end{array}
$$

- Assume x is not free in ψ :

$$
\begin{array}{lcc}
\forall x \varphi \wedge \psi & \dashv \vdash & \forall x(\varphi \wedge \psi) \\
\forall x \varphi \vee \psi & \dashv \vdash & \forall x(\varphi \vee \psi) \\
\exists x \varphi \wedge \psi & \dashv \vdash & \exists x(\varphi \wedge \psi) \\
\exists x \varphi \vee \psi & \dashv \vdash & \exists x(\varphi \vee \psi) \\
\forall x(\psi \rightarrow \varphi) & -\vdash & \psi \rightarrow \forall x \varphi \\
\exists x(\varphi \rightarrow \psi) & \dashv \vdash & \forall x \varphi \rightarrow \psi \\
\forall x(\varphi \rightarrow \psi) & -\vdash & \exists x \varphi \rightarrow \psi \\
\exists x(\psi \rightarrow \varphi) & \dashv \vdash & \psi \rightarrow \exists x \varphi
\end{array}
$$

quantifier equivalences

Theorem

$$
\begin{array}{lll}
\neg \forall x \varphi & \dashv \vdash & \exists x \neg \varphi \\
\neg \exists x \varphi & \dashv \vdash & \forall x \neg \varphi
\end{array}
$$

- Assume x is not free in ψ :

$$
\begin{array}{llc}
\forall x \varphi \wedge \psi & \dashv \vdash & \forall x(\varphi \wedge \psi) \\
\forall x \varphi \vee \psi & \dashv \vdash & \forall x(\varphi \vee \psi) \\
\exists x \varphi \wedge \psi & \dashv \vdash & \exists x(\varphi \wedge \psi) \\
\exists x \varphi \vee \psi & \dashv \vdash & \exists x(\varphi \vee \psi) \\
\forall x(\psi \rightarrow \varphi) & \dashv \vdash & \psi \rightarrow \forall x \varphi \\
\exists x(\varphi \rightarrow \psi) & \dashv \vdash & \forall x \varphi \rightarrow \psi \\
\forall x(\varphi \rightarrow \psi) & \dashv \vdash & \exists x \varphi \rightarrow \psi \\
\exists x(\psi \rightarrow \varphi) & \dashv \vdash & \psi \rightarrow \exists x \varphi \\
\forall x \varphi \wedge \forall x \psi & \dashv \vdash & \forall x(\varphi \wedge \psi) \\
\exists x \varphi \vee \exists x \psi & -\vdash & \exists x(\varphi \vee \psi)
\end{array}
$$

proof of only one quantifier equivalence, others in the book

proof of only one quantifier equivalence, others in the book

- $\neg \forall x \varphi \vdash \exists x \neg \varphi$

proof of only one quantifier equivalence, others in the book

- $\neg \forall x \varphi \vdash \exists x \neg \varphi$

	$1 \quad \neg \forall x \varphi$	premise
	$2 \neg \exists x \neg \varphi$	assumption
x_{0}	3	fresh x_{0}
	$\begin{array}{ll} 4 & \neg \varphi\left[x_{0} / x\right] \\ 5 & \exists x \neg \varphi \end{array}$	assumption $\exists x \quad i, 4$
	$6 \perp$	$\neg \mathrm{e}, 5,2$
	$7 \quad \varphi\left[x_{0} / x\right]$	PBC, 4-6
	$8 \quad \forall x \varphi$	$\forall x$ i, 3-7
		$\neg \mathrm{f}, 8,1$
	${ }_{10} \quad \exists x \neg \varphi$	PBC, 2-9

three fundamental questions

three fundamental questions

- Question

Given a WFF φ, can we automate the answer to the query " $\vdash \varphi$??"

three fundamental questions

- Question

Given a WFF φ, can we automate the answer to the query " $\vdash \varphi$??"

- Question

Given a WFF φ, can we automate the answer to the query " $\vdash \varphi$??"

three fundamental questions

- Question

Given a WFF φ, can we automate the answer to the query " $\vdash \varphi$??"

- Question

Given a WFF φ, can we automate the answer to the query " $\vdash \varphi$??"

- Question

Given a formal proof

1. φ_{1}
2. φ_{2}
3. \vdots
n. φ_{n}
can we automate the verification of the proof?
