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proof rules for equality

I equality introduction

.
=i

t .= t

I equality elimination

t1
.
= t2 ϕ[t1/x] .

=e
ϕ[t2/x]
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formal proof: “
.
=” is symmetric

 u1
.
= u2 premise

 u1
.
= u1

.
=i

 u2
.
= u1

.
=e 1, 2

What above corresponds to the WFF ϕ in the use of rule
.
=e?

Answer: “x .
= u1” corresponds to ϕ in the rule

.
=e, so that

“u1
.
= u1” corresponds to ϕ[u1/x] & “u2

.
= u1” corresponds to ϕ[u2/x]

We have formally proved
u1

.
= u2 ` u2

.
= u1

We can therefore use as a derived proof rule

t1
.
= t2 .

= symmetric
t2
.
= t1
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formal proof: “
.
=” is transitive

 u2
.
= u3 premise

 u1
.
= u2 premise

 u1
.
= u3

.
=e 1, 2

What above corresponds to the WFF ϕ in the use of rule
.
=e?
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We have formally proved
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= u3 ` u1
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We can therefore use as a derived proof rule
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.
= t2 t2

.
= t3 .

= transitive
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.
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proof rules for universal quantification

I universal quantifier elimination

∀x ϕ
∀x e

ϕ[t/x]

(usual assumption: t is substitutable for x)

I universal quantifier introduction

∀x i
∀x ϕ

x0 fresh
...

ϕ[x0/x]
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proof rules for existential quantification

I existential quantifier introduction

ϕ[t/x]
∃x i

∃x ϕ

I existential quantifier elimination

∃x ϕ
∃x e

χ

x0 fresh

ϕ[x0/x] assumption
...

χ

(x0 cannot occur outside its box, in particular, it cannot occur in χ)

I Note carefully:
Rule (∃x e) introduces both a fresh variable and an assumption.
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example: ∀x ∀y ϕ(x, y) ` ∀y ∀x ϕ(x, y)

 ∀x ∀y ϕ(x, y) premise

y0  fresh y0

x0  fresh x0

 ∀y ϕ(x0, y) ∀x e, 1

 ϕ(x0, y0) ∀x e, 4

 ∀x ϕ(x, y0) ∀x i, 5

 ∀y ∀x ϕ(x, y) ∀y i, 6
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example: ∀x (P(x) → Q(x)), ∀x P(x) ` ∀x Q(x)

 ∀x (P(x) → Q(x)) premise

 ∀x P(x) premise

x0  fresh x0

 P(x0) → Q(x0) ∀x e, 1

 P(x0) ∀x e, 2

 Q(x0) →e, 4, 5

 ∀x Q(x) ∀x i, 3-6
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example: ∃x (ϕ(x) ∨ ψ(x)) ` ∃x ϕ(x) ∨ ∃x ψ(x)

 ∃x (ϕ(x) ∨ ψ(x)) premise

x0  fresh x0

 ϕ(x0) ∨ ψ(x0) assumption

 ϕ(x0)

 ∃x ϕ(x)

 ∃x ϕ(x) ∨ ∃x ψ(x)

ψ(x0) assumption

∃x ψ(x) ∃x i, 4

∃x ϕ(x) ∨ ∃x ψ(x) ∨i, 5

 ∃x ϕ(x) ∨ ∃x ψ(x) ∨e, 3, 4-6

 ∃x ϕ(x) ∨ ∃x ψ(x) ∃x e, 1, 2-7
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example: ∃x ϕ(x) ∨ ∃x ψ(x) ` ∃x (ϕ(x) ∨ ψ(x))

I Yes, this is a derivable sequent – left to you.

I Hence, ∃x ϕ(x) ∨ ∃x ψ(x) a` ∃x (ϕ(x) ∨ ψ(x))
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example: ∃x (ϕ(x) ∧ ψ(x)) ` ∃x ϕ(x) ∧ ∃x ψ(x)

I Yes, this is a derivable sequent – similar to the formal proof of
∃x (ϕ(x) ∨ ψ(x)) ` ∃x ϕ(x) ∨ ∃x ψ(x)

I example: ∃x ϕ(x) ∧ ∃x ψ(x) ` ∃x (ϕ(x)∧ψ(x)) ??

No, this is not a derivable sequent

Find an interpretation (a “model”) where

∃x ϕ(x) ∧ ∃x ψ(x) is true, but

∃x (ϕ(x) ∧ ψ(x)) is false

I Hence, ∃x (ϕ(x) ∧ ψ(x)) 6 a ` ∃x ϕ(x) ∧ ∃x ψ(x)

REMEMBER! To show that a WFF is NOT derivable, it is generally easier
to find an interpretation where the WFF is not satisfiable.
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example: ∃x P(x),∀x ∀y (P(x) → Q(y)) ` ∀y Q(y)

 ∃x P(x) premise

 ∀x ∀y (P(x) → Q(y)) premise

y0  fresh y0

x0  fresh x0

 P(x0) assumption

 ∀y (P(x0) → Q(y)) ∀x e, 2

 P(x0) → Q(y0) ∀y e, 6

 Q(y0) →e, 5, 7

 Q(y0) ∃x e, 1, 4-8

 ∀y Q(y) ∀y i, 3-9
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quantifier equivalences

Theorem
I ¬∀x ϕ a` ∃x ¬ϕ

¬∃x ϕ a` ∀x ¬ϕ

I Assume x is not free in ψ:
∀x ϕ ∧ ψ a` ∀x (ϕ ∧ ψ)
∀x ϕ ∨ ψ a` ∀x (ϕ ∨ ψ)
∃x ϕ ∧ ψ a` ∃x (ϕ ∧ ψ)
∃x ϕ ∨ ψ a` ∃x (ϕ ∨ ψ)
∀x (ψ → ϕ) a` ψ → ∀x ϕ

∃x (ϕ→ ψ) a` ∀x ϕ→ ψ

∀x (ϕ→ ψ) a` ∃x ϕ→ ψ

∃x (ψ → ϕ) a` ψ → ∃x ϕ

I ∀x ϕ ∧ ∀x ψ a` ∀x (ϕ ∧ ψ)
∃x ϕ ∨ ∃x ψ a` ∃x (ϕ ∨ ψ)

Assaf Kfoury, CS 512, Spring 2017, Handout 16 page 40 of 52



quantifier equivalences

Theorem
I ¬∀x ϕ a` ∃x ¬ϕ

¬∃x ϕ a` ∀x ¬ϕ
I Assume x is not free in ψ:

∀x ϕ ∧ ψ a` ∀x (ϕ ∧ ψ)
∀x ϕ ∨ ψ a` ∀x (ϕ ∨ ψ)
∃x ϕ ∧ ψ a` ∃x (ϕ ∧ ψ)
∃x ϕ ∨ ψ a` ∃x (ϕ ∨ ψ)
∀x (ψ → ϕ) a` ψ → ∀x ϕ

∃x (ϕ→ ψ) a` ∀x ϕ→ ψ

∀x (ϕ→ ψ) a` ∃x ϕ→ ψ

∃x (ψ → ϕ) a` ψ → ∃x ϕ

I ∀x ϕ ∧ ∀x ψ a` ∀x (ϕ ∧ ψ)
∃x ϕ ∨ ∃x ψ a` ∃x (ϕ ∨ ψ)

Assaf Kfoury, CS 512, Spring 2017, Handout 16 page 41 of 52



quantifier equivalences

Theorem
I ¬∀x ϕ a` ∃x ¬ϕ

¬∃x ϕ a` ∀x ¬ϕ
I Assume x is not free in ψ:

∀x ϕ ∧ ψ a` ∀x (ϕ ∧ ψ)
∀x ϕ ∨ ψ a` ∀x (ϕ ∨ ψ)
∃x ϕ ∧ ψ a` ∃x (ϕ ∧ ψ)
∃x ϕ ∨ ψ a` ∃x (ϕ ∨ ψ)
∀x (ψ → ϕ) a` ψ → ∀x ϕ

∃x (ϕ→ ψ) a` ∀x ϕ→ ψ

∀x (ϕ→ ψ) a` ∃x ϕ→ ψ

∃x (ψ → ϕ) a` ψ → ∃x ϕ

I ∀x ϕ ∧ ∀x ψ a` ∀x (ϕ ∧ ψ)
∃x ϕ ∨ ∃x ψ a` ∃x (ϕ ∨ ψ)

Assaf Kfoury, CS 512, Spring 2017, Handout 16 page 42 of 52



quantifier equivalences

Theorem
I ¬∀x ϕ a` ∃x ¬ϕ

¬∃x ϕ a` ∀x ¬ϕ
I Assume x is not free in ψ:

∀x ϕ ∧ ψ a` ∀x (ϕ ∧ ψ)
∀x ϕ ∨ ψ a` ∀x (ϕ ∨ ψ)
∃x ϕ ∧ ψ a` ∃x (ϕ ∧ ψ)
∃x ϕ ∨ ψ a` ∃x (ϕ ∨ ψ)
∀x (ψ → ϕ) a` ψ → ∀x ϕ

∃x (ϕ→ ψ) a` ∀x ϕ→ ψ

∀x (ϕ→ ψ) a` ∃x ϕ→ ψ

∃x (ψ → ϕ) a` ψ → ∃x ϕ

I ∀x ϕ ∧ ∀x ψ a` ∀x (ϕ ∧ ψ)
∃x ϕ ∨ ∃x ψ a` ∃x (ϕ ∨ ψ)

Assaf Kfoury, CS 512, Spring 2017, Handout 16 page 43 of 52



proof of only one quantifier equivalence, others in the book

I ¬∀x ϕ ` ∃x ¬ϕ

 ¬∀x ϕ premise

 ¬∃x ¬ϕ assumption

x0  fresh x0

 ¬ϕ[x0/x] assumption

 ∃x ¬ϕ ∃x i, 4

 ⊥ ¬e, 5, 2

 ϕ[x0/x] PBC, 4-6

 ∀x ϕ ∀x i, 3-7

 ⊥ ¬e, 8, 1

 ∃x ¬ϕ PBC, 2-9
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three fundamental questions

I Question
Given a WFF ϕ, can we automate the answer to the query “` ϕ ??”

I Question
Given a WFF ϕ, can we automate the answer to the query “6` ϕ ??”

I Question
Given a formal proof

1. ϕ1

2. ϕ2

3.
...

n. ϕn

can we automate the verification of the proof?
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