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first-order models (structures)

» given a vocabulary (a.k.a. signature, a.k.a. similarity type):
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first-order models (structures)

» given a vocabulary (a.k.a. signature, a.k.a. similarity type):

» aset F of function symbols
(including constant symbols as zero-ary function symbols)

» aset P of predicate symbols

» a model M for (F,P) consists of:
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first-order models (structures)

» given a vocabulary (a.k.a. signature, a.k.a. similarity type):

» aset F of function symbols
(including constant symbols as zero-ary function symbols)

» aset P of predicate symbols
» amodel M for (F,P) consists of:
» anon-empty set A, the universe or domain of concrete values
» for every O-ary ¢ € F, a concrete element cM
» for every n-ary f € F, with n > 1, a concrete function fM : A" — A

» for every n-ary P € P, with n > 1, a concrete predicate PM C A"
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interpretation of open WFF’s requires an environment

» We need an environment to interpret WFF’s with free variables.
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interpretation of open WFF’s requires an environment
» We need an environment to interpret WFF’s with free variables.

> an environment or look-up table for model M £ (A, PM FM):
¢ : {all variables} — A
» /[x — a] denotes an adjustment of ¢ at variable x:

if x and y are the same variable
e[mauy)é{“ Ty

£(y) otherwise

Assaf Kfoury, CS 512, Spring 2017, Handout 17 page 7 of 21



satisfaction of WFF’s w.r.t. model M and look-up table ¢

> interpretation of terms:

> interpretation of WFF’s:
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satisfaction of WFF’s w.r.t. model M and look-up table ¢

> interpretation of terms:

£(x) ifr=x

tM,e A M

c if t = ¢ where c is constant symbol

FM@EME M) it =f(n,. . . ,1,) where f is n-ary with n > 1

> interpretation of WFF’s:
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satisfaction of WFF’s w.r.t. model M and look-up table ¢

> interpretation of terms:

£(x) ifr=x
[M,e A M

=Jqc if t = ¢ where c is constant symbol

FM@EME M) it =f(n,. . . ,1,) where f is n-ary with n > 1

n
> interpretation of WFF’s:
» ML= (1 =1) it =2

> MU= Pt 0) it @Y ML) e pM

n
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satisfaction of WFF’s w.r.t. model M and look-up table ¢

> interpretation of terms:

£(x) ifr=x
Mba LM if t = ¢ where c is constant symbol
FM@EME M) it =f(n,. . . ,1,) where f is n-ary with n > 1

> interpretation of WFF’s:

» ML= (1 =1) it =2

> MU= Pt 0) it @Y ML) e pM

» Mll=pVvy iff MlE@ or MLEY

» MlEpAY iff M LE @ and ML=y
MAl=p = iff M, LY whenever M, L ¢
M, = -y iff itisnotthe casethat M, ¢ = ¢

v

v
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satisfaction of WFF’s w.r.t. model M and look-up table ¢

> interpretation of terms:

£(x) ifr=x
Mba LM if t = ¢ where c is constant symbol
FM@EME M) it =f(n,. . . ,1,) where f is n-ary with n > 1

> interpretation of WFF’s:
> MU= (n =) it ="t
> MU= Pt 0) it @Y ML) e pM
» MlEeVYy iff MlEep or M=y
» MAlEpAY iff M,y and M=y
» Ml —1y iff ML=y whenever M, L= ¢
» M,l = -y iff itisnotthe case that M, ¢ = ¢
» M {EVYxe iff M Lxw—a] = @foreverya € A
» M ll=3xe it M lx— d] = pforsomeacA
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semantic entailment, semantic validity, satisfiability
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semantic entailment, semantic validity, satisfiability

» WFF ¢ is satisfiable iff
there is some M and some ¢ such that M, ¢ |= ¢

» WFF ¢ is semantically valid (or logically valid) iff
for every M and every ¢ it is the case that M, ¢ = ¢
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semantic entailment, semantic validity, satisfiability

» WFF ¢ is satisfiable iff
there is some M and some ¢ such that M, ¢ |= ¢

» WFF ¢ is semantically valid (or logically valid) iff
for every M and every ¢ it is the case that M, ¢ = ¢

let I be a set of WFF’s:
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semantic entailment, semantic validity, satisfiability

» WFF ¢ is satisfiable iff
there is some M and some ¢ such that M, ¢ |= ¢

» WFF ¢ is semantically valid (or logically valid) iff
for every M and every ¢ it is the case that M, ¢ = ¢

let I be a set of WFF’s:

» I is satisfiable iff
there is some M and some ¢ such that M, ¢ =T,
e, M, 0= pforevery p €T’

» semantic entailment: I" = ¢ iff
for every M and every /, it holds that M, ¢ = T implies M, ¢ = 9
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tautologies and logical (or semantical) validities
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tautologies and logical (or semantical) validities

» logical validities (or semantical validities) are WFF’s that are
satisfied by (or true in) every M and /¢
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tautologies and logical (or semantical) validities

» logical validities (or semantical validities) are WFF’s that are
satisfied by (or true in) every M and /¢
» tautologies are a proper subset of the first-order logical validities

> in propositional logic, the two notions coincide

» in first-order logic, a tautology is a WFF that can be obtained by
taking a tautology of propositional logic and uniformly replacing
each propositional atom (or variable) by a first-order formula (one
formula per propositional atom)

Assaf Kfoury, CS 512, Spring 2017, Handout 17 page 19 of 21



tautologies and logical (or semantical) validities

» logical validities (or semantical validities) are WFF’s that are
satisfied by (or true in) every M and /¢
» tautologies are a proper subset of the first-order logical validities

> in propositional logic, the two notions coincide

» in first-order logic, a tautology is a WFF that can be obtained by
taking a tautology of propositional logic and uniformly replacing
each propositional atom (or variable) by a first-order formula (one
formula per propositional atom)

» example of a logical validity which is not a tautology:
(Vx @) = (=3x~p)
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