CS 512, Spring 2017, Handout 17 Predicate Logic: Semantics

Assaf Kfoury

March 14, 2017

Assaf Kfoury, CS 512, Spring 2017, Handout 17

page 1 of 21

given a vocabulary (a.k.a. signature, a.k.a. similarity type):

- given a vocabulary (a.k.a. signature, a.k.a. similarity type):
 - a set *F* of function symbols (including constant symbols as zero-ary function symbols)
 - a set \mathcal{P} of **predicate** symbols

- given a vocabulary (a.k.a. signature, a.k.a. similarity type):
 - a set *F* of function symbols (including constant symbols as zero-ary function symbols)
 - a set \mathcal{P} of **predicate** symbols
- a model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ consists of:

- given a vocabulary (a.k.a. signature, a.k.a. similarity type):
 - a set *F* of function symbols (including constant symbols as zero-ary function symbols)
 - a set \mathcal{P} of **predicate** symbols
- a model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ consists of:
 - a non-empty set A, the **universe** or **domain** of concrete values
 - for every 0-ary $c \in \mathcal{F}$, a concrete element $c^{\mathcal{M}}$
 - ▶ for every *n*-ary $f \in \mathcal{F}$, with $n \ge 1$, a concrete function $f^{\mathcal{M}} : A^n \to A$
 - ▶ for every *n*-ary $P \in \mathcal{P}$, with $n \ge 1$, a concrete predicate $P^{\mathcal{M}} \subseteq A^n$

interpretation of open WFF's requires an environment

We need an environment to interpret WFF's with free variables.

interpretation of open WFF's requires an environment

- We need an environment to interpret WFF's with free variables.
- ▶ an environment or look-up table for model $\mathcal{M} \triangleq (A, \mathcal{P}^{\mathcal{M}}, \mathcal{F}^{\mathcal{M}})$:

$$\ell: \{ all variables \} \to A$$

• $\ell[x \mapsto a]$ denotes an adjustment of ℓ at variable *x*:

$$\ell[x \mapsto a](y) \triangleq \begin{cases} a \\ \ell(y) \end{cases}$$

if *x* and *y* are the same variable otherwise

interpretation of terms:

interpretation of WFF's:

interpretation of terms:

$$t^{\mathcal{M},\ell} \triangleq \begin{cases} \ell(x) & \text{if } t = x \\ c^{\mathcal{M}} & \text{if } t = c \text{ where } c \text{ is constant symbol} \\ f^{\mathcal{M}}(t_1^{\mathcal{M},\ell},\ldots,t_n^{\mathcal{M},\ell}) & \text{if } t = f(t_1,\ldots,t_n) \text{ where } f \text{ is } n\text{-ary with } n \ge 1 \end{cases}$$

interpretation of WFF's:

interpretation of terms:

$$t^{\mathcal{M},\ell} \triangleq \begin{cases} \ell(x) & \text{if } t = x \\ c^{\mathcal{M}} & \text{if } t = c \text{ where } c \text{ is constant symbol} \\ f^{\mathcal{M}}(t_1^{\mathcal{M},\ell},\ldots,t_n^{\mathcal{M},\ell}) & \text{if } t = f(t_1,\ldots,t_n) \text{ where } f \text{ is } n\text{-ary with } n \ge 1 \end{cases}$$

interpretation of WFF's:

$$\mathcal{M}, \ell \models (t_1 \doteq t_2) \quad \text{iff} \quad t_1^{\mathcal{M}, \ell} = t_2^{\mathcal{M}, \ell}$$
$$\mathcal{M}, \ell \models P(t_1, \dots, t_n) \quad \text{iff} \quad \langle t_1^{\mathcal{M}, \ell}, \dots, t_n^{\mathcal{M}, \ell} \rangle \in P^{\mathcal{M}}$$

interpretation of terms:

$$t^{\mathcal{M},\ell} \triangleq \begin{cases} \ell(x) & \text{if } t = x \\ c^{\mathcal{M}} & \text{if } t = c \text{ where } c \text{ is constant symbol} \\ f^{\mathcal{M}}(t_1^{\mathcal{M},\ell},\ldots,t_n^{\mathcal{M},\ell}) & \text{if } t = f(t_1,\ldots,t_n) \text{ where } f \text{ is } n\text{-ary with } n \ge 1 \end{cases}$$

interpretation of WFF's:

• $\mathcal{M}, \ell \models (t_1 \doteq t_2)$ iff $t_1^{\mathcal{M}, \ell} = t_2^{\mathcal{M}, \ell}$ • $\mathcal{M}, \ell \models P(t_1, \dots, t_n)$ iff $\langle t_1^{\mathcal{M}, \ell}, \dots, t_n^{\mathcal{M}, \ell} \rangle \in P^{\mathcal{M}}$ • $\mathcal{M}, \ell \models \varphi \lor \psi$ iff $\mathcal{M}, \ell \models \varphi$ or $\mathcal{M}, \ell \models \psi$ • $\mathcal{M}, \ell \models \varphi \land \psi$ iff $\mathcal{M}, \ell \models \varphi$ and $\mathcal{M}, \ell \models \psi$ • $\mathcal{M}, \ell \models \varphi \rightarrow \psi$ iff $\mathcal{M}, \ell \models \psi$ whenever $\mathcal{M}, \ell \models \varphi$ • $\mathcal{M}, \ell \models \neg \varphi$ iff it is not the case that $\mathcal{M}, \ell \models \varphi$

interpretation of terms:

$$t^{\mathcal{M},\ell} \triangleq \begin{cases} \ell(x) & \text{if } t = x \\ c^{\mathcal{M}} & \text{if } t = c \text{ where } c \text{ is constant symbol} \\ f^{\mathcal{M}}(t_1^{\mathcal{M},\ell},\ldots,t_n^{\mathcal{M},\ell}) & \text{if } t = f(t_1,\ldots,t_n) \text{ where } f \text{ is } n\text{-ary with } n \ge 1 \end{cases}$$

interpretation of WFF's:

• $\mathcal{M}, \ell \models (t_1 \doteq t_2)$ iff $t_1^{\mathcal{M}, \ell} = t_2^{\mathcal{M}, \ell}$ • $\mathcal{M}, \ell \models P(t_1, \ldots, t_n)$ iff $\langle t_1^{\mathcal{M}, \ell}, \ldots, t_n^{\mathcal{M}, \ell} \rangle \in P^{\mathcal{M}}$ • $\mathcal{M}, \ell \models \varphi \lor \psi$ iff $\mathcal{M}, \ell \models \varphi$ or $\mathcal{M}, \ell \models \psi$ • $\mathcal{M}, \ell \models \varphi \land \psi$ iff $\mathcal{M}, \ell \models \varphi$ and $\mathcal{M}, \ell \models \psi$ • $\mathcal{M}, \ell \models \varphi \rightarrow \psi$ iff $\mathcal{M}, \ell \models \psi$ whenever $\mathcal{M}, \ell \models \varphi$ • $\mathcal{M}, \ell \models \neg \varphi$ iff it is **not** the case that $\mathcal{M}, \ell \models \varphi$ • $\mathcal{M}, \ell \models \forall x \varphi$ iff $\mathcal{M}, \ell[x \mapsto a] \models \varphi$ for every $a \in A$ • $\mathcal{M}, \ell \models \exists x \varphi$ iff $\mathcal{M}, \ell[x \mapsto a] \models \varphi$ for some $a \in A$

• WFF φ is **satisfiable** iff

there is some \mathcal{M} and some ℓ such that $\mathcal{M}, \ell \models \varphi$

WFF φ is semantically valid (or logically valid) iff for every M and every ℓ it is the case that M, ℓ ⊨ φ

• WFF φ is **satisfiable** iff

there is some \mathcal{M} and some ℓ such that $\mathcal{M}, \ell \models \varphi$

WFF φ is semantically valid (or logically valid) iff for every M and every ℓ it is the case that M, ℓ ⊨ φ

let Γ be a set of WFF's:

• WFF φ is **satisfiable** iff

there is some $\mathcal M$ and some ℓ such that $\mathcal M, \ell \models \varphi$

WFF φ is semantically valid (or logically valid) iff for every M and every ℓ it is the case that M, ℓ ⊨ φ

let Γ be a set of WFF's:

Γ is satisfiable iff

there is some \mathcal{M} and some ℓ such that $\mathcal{M}, \ell \models \Gamma$, *i.e.*, $\mathcal{M}, \ell \models \varphi$ for every $\varphi \in \Gamma$

► semantic entailment: $\Gamma \models \psi$ iff for every \mathcal{M} and every ℓ , it holds that $\mathcal{M}, \ell \models \Gamma$ implies $\mathcal{M}, \ell \models \psi$

► logical validities (or semantical validities) are WFF's that are satisfied by (or true in) every *M* and *ℓ*

- ► logical validities (or semantical validities) are WFF's that are satisfied by (or true in) every *M* and *ℓ*
- tautologies are a proper subset of the first-order logical validities
- in propositional logic, the two notions coincide
- in first-order logic, a tautology is a WFF that can be obtained by taking a tautology of propositional logic and uniformly replacing each propositional atom (or variable) by a first-order formula (one formula per propositional atom)

- ► logical validities (or semantical validities) are WFF's that are satisfied by (or true in) every *M* and *ℓ*
- tautologies are a proper subset of the first-order logical validities
- in propositional logic, the two notions coincide
- in first-order logic, a tautology is a WFF that can be obtained by taking a tautology of propositional logic and uniformly replacing each propositional atom (or variable) by a first-order formula (one formula per propositional atom)

▶ example of a logical validity which is not a tautology: $(\forall x \varphi) \rightarrow (\neg \exists x \neg \varphi)$