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more on quantifier equivalences
Lemma. For any string of quantifiers

−→
Qx , Q1x1Q2x2 · · ·Qnxn

where Q1,Q2, . . . ,Qn ∈ {∀,∃}, and for any WFF’s ϕ and ψ:

I ` −→
Qx ¬∀y ϕ ↔ −→

Qx ∃y ¬ ϕ

I ` −→
Qx ¬∃y ϕ ↔ −→

Qx ∀y ¬ ϕ

I ` −→
Qx (∀yϕ ∨ ψ) ↔ −→

Qx ∀z (ϕ [y := z] ∨ ψ)

I ` −→
Qx (ϕ ∨ ∀yψ) ↔ −→

Qx ∀z (ϕ ∨ ψ [y := z] )

I ` −→
Qx (∃yϕ ∨ ψ) ↔ −→

Qx ∃z (ϕ [y := z] ∨ ψ)

I ` −→
Qx (ϕ ∨ ∃yψ) ↔ −→

Qx ∃z (ϕ ∨ ψ [y := z] )

where z is a fresh variable occurring nowhere else.

Proof. Similar to proof of Theorem 2.13 in LCS, page 117.

Assaf Kfoury, CS 512, Spring 2017, Handout 19 page 2 of 8



prenex normal form
Theorem. For every WFF ϕ there is an equivalent WFF ψ with the same
free variables where all quantifiers appear at the beginning.

ψ is called the prenex normal form of ϕ.

Proof. By induction on the structure of ϕ.

I If ϕ is atomic, then ψ , ϕ.

I If ϕ is Qxϕ0 where Q ∈ {∀,∃} and ψ0 is a PNF of ϕ0,
then ψ , Qxψ0.

I If ϕ is ¬ϕ0 and ψ0 is a PNF of ϕ0,
then use the two first cases in the lemma (on preceding slide)
repeatedly, to obtain ψ.

I If ϕ is ϕ0 ∨ ϕ1, and ψ0 and ψ1 are PNF’s of ϕ0 and ϕ1,
then use the four last cases in the lemma repeatedly, to obtain ψ.
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prenex normal form (continued)
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skolemization
Lemma. A first-order sentence ϕ of the form

ϕ , ∀x1 · · · ∀xn∃yψ

over vocabulary/signature Σ is equisatisfiable with the sentence ϕ′

ϕ′ , ∀x1 · · · ∀xn ψ[y := f (x1, . . . , xn)]

where f is a fresh n-ary function symbol not in Σ.

Proof.

LetM be a model for Σ andM′ , (M, fM
′
) a model for Σ ∪ {f}. If

M′ |= ϕ′ thenM |= ϕ. Hence, if ϕ′ is satisfiable, then so is ϕ.

Conversely, letM |= ϕ. Construct a modelM′ for Σ ∪ {f} by expanding
M so that for every a1, . . . , an ∈ A, the function fM

′
maps (a1, . . . , an) to

b whereM, a1, . . . , an, b |= ψ. Hence,M′ |= ϕ′. Hence, if ϕ is
satisfiable, then so is ϕ′.
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skolemization (continued)

Theorem. If ϕ is a first-order sentence over the vocabulary/signature Σ,
then there is a universal first-order sentence ϕ′ over an expanded
vocabulary/signature Σ′ obtained by adding new function symbols such
that ϕ and ϕ′ are equisatisfiable.

Proof. By repeated use of the lemma (on the preceding slide).

Remark. The theorem does NOT claim that ϕ and ϕ′ are equivalent ,

only that they are equisatisfiable .

However, it will be always the case that ` ϕ′ → ϕ, but not always that
` ϕ→ ϕ′.
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exercise on skolemization
Exercise:

Let ϕ(x, y) be an atomic WFF with free variables x and y, and f a unary
function symbol not appearing in ϕ.

1. Show that the following sentence is valid, i.e., formally provable:

∀xϕ(x, f (x))→ ∀x∃yϕ(x, y)

Hint: You can use any of the available methods, i.e., you can try to
find a formal proof or you can try a semantic approach to show
∀xϕ(x, f (x)) |= ∀x∃yϕ(x, y).

2. Show that the following sentence is NOT valid:

∀x∃yϕ(x, y)→ ∀xϕ(x, f (x))

Hint: Try a semantic approach, i.e., define an appropriate ϕ and a
model where the left-hand side of “→” is true but the right-hand side
of “→” is false.
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