CS 512, Spring 2017, Handout 20 Examples of Relational/Algebraic Structures: Posets, Lattices, Heyting Algebras, Boolean Algebras, and more

Assaf Kfoury

March 21, 2017

Assaf Kfoury, CS 512, Spring 2017, Handout 20

An algebraic structure A, or just an algebra A, is a set A, called the carrier set or underlying set of A, with one or more operations on the carrier A. (Search the Web, here and here, for more details.)

- An algebraic structure A, or just an algebra A, is a set A, called the carrier set or underlying set of A, with one or more operations on the carrier A. (Search the Web, here and here, for more details.)
- Examples of algebraic structures:
 - $\blacktriangleright (\mathbb{Z},+,\cdot)$

the set of integers with **binary** operations addition "+" and multiplication " \cdot ",

► (N, succ, pred, 0, 1) the set of natural numbers with unary operations, "succ" and "pred", and nullary operations, "0" and "1",

- An algebraic structure A, or just an algebra A, is a set A, called the carrier set or underlying set of A, with one or more operations on the carrier A. (Search the Web, here and here, for more details.)
- Examples of algebraic structures:
 - $\blacktriangleright (\mathbb{Z},+,\cdot)$

the set of integers with **binary** operations addition "+" and multiplication " \cdot ",

- ► (N, succ, pred, 0, 1) the set of natural numbers with unary operations, "succ" and "pred", and nullary operations, "0" and "1",
- (T, node, Lt, Rt) where T is the least set such that:

 $T \supseteq \{a, b, c\} \cup \{ \langle t_1 \ t_2 \rangle \mid t_1, t_2 \in T \}$

with one **binary** operation "node" and two **unary** operations "Lt" and "Rt", defined by:

node :
$$T \times T \to T$$
 such that node $(t_1, t_2) = \langle t_1 t_2 \rangle$

$$\begin{aligned} \mathsf{Lt}: T \to T & \text{such that } \mathsf{Lt}(t) &= \begin{cases} t_1 & \text{if } t = \langle t_1 \ t_2 \rangle, \\ \text{undefined otherwise.} \end{cases} \\ \mathsf{Rt}: T \to T & \text{such that } \mathsf{Rt}(t) &= \begin{cases} t_2 & \text{if } t = \langle t_1 \ t_2 \rangle, \\ \text{undefined otherwise.} \end{cases} \end{aligned}$$

$$\begin{array}{ll} \mathsf{node}: T \times T \to T & \mathsf{such that} \ \mathsf{node}(t_1, t_2) \ = \ \langle t_1 \ t_2 \rangle \\ \mathsf{Lt}: T \to T & \mathsf{such that} \ \mathsf{Lt}(t) & = \ \begin{cases} t_1 & \mathsf{if} \ t = \ \langle t_1 \ t_2 \rangle, \\ \mathsf{undefined} & \mathsf{otherwise.} \end{cases} \\ \mathsf{Rt}: T \to T & \mathsf{such that} \ \mathsf{Rt}(t) & = \ \begin{cases} t_2 & \mathsf{if} \ t = \ \langle t_1 \ t_2 \rangle, \\ \mathsf{undefined} & \mathsf{otherwise.} \end{cases} \end{array}$$

Sometimes an algebraic structure includes two (or more) carriers, together with operations between them, in which case we say the algebraic structure is two-sorted (or multi-sorted).

node :
$$T \times T \to T$$
 such that node $(t_1, t_2) = \langle t_1 t_2 \rangle$
Lt : $T \to T$ such that Lt (t) = $\begin{cases} t_1 & \text{if } t = \langle t_1 t_2 \rangle \\ \text{undefined otherwise.} \end{cases}$

 $\mathsf{Rt}: T \to T \qquad \text{such that } \mathsf{Rt}(t) \qquad = \begin{cases} t_2 & \text{if } t = \langle t_1 \, t_2 \rangle, \\ \text{undefined otherwise.} \end{cases}$

- Sometimes an algebraic structure includes two (or more) carriers, together with operations between them, in which case we say the algebraic structure is two-sorted (or multi-sorted).
- Examples of two-sorted algebraic structures:

▶
$$(\mathbb{Z}, \mathbb{B}, \leq, +, \cdot)$$
 where $\mathbb{B} = \{F, T\}$ and $\leq : \mathbb{Z} \times \mathbb{Z} \to \mathbb{B}$.

 $t_2\rangle$,

node :
$$T \times T \to T$$
 such that node $(t_1, t_2) = \langle t_1 t_2 \rangle$
Lt : $T \to T$ such that Lt $(t) = \begin{cases} t_1 & \text{if } t = \langle t_1 t_2 \rangle, \\ \text{undefined otherwise.} \end{cases}$

 $\mathsf{Rt}: T \to T \qquad \text{ such that } \mathsf{Rt}(t) \qquad = \begin{cases} t_2 & \text{if } t = \langle t_1 \, t_2 \rangle, \\ \text{undefined otherwise.} \end{cases}$

- Sometimes an algebraic structure includes two (or more) carriers, together with operations between them, in which case we say the algebraic structure is two-sorted (or multi-sorted).
- Examples of two-sorted algebraic structures:
 - $\blacktriangleright \ (\mathbb{Z},\mathbb{B},\leqslant,+,\cdot) \quad \text{ where } \mathbb{B}=\{\textbf{F},\textbf{T}\} \ \text{ and } \leqslant \colon \mathbb{Z}\times\mathbb{Z}\to\mathbb{B}.$
 - ► $(T, \mathbb{N}, \text{node}, \text{Lt}, \text{Rt}, ||, \text{height})$ where *T* is defined on the previous slide, with $||: T \to \mathbb{N}$ and height $: T \to \mathbb{N}$.

Sometimes in a multi-sorted algebraic structure, such as (ℤ, 𝔅, ≤, +, ·), we omit the Boolean carrier 𝔅 for brevity and simply write (ℤ, ≤, +, ·).

- Sometimes in a multi-sorted algebraic structure, such as (ℤ, 𝔅, ≤, +, ·), we omit the Boolean carrier 𝔅 for brevity and simply write (ℤ, ≤, +, ·).
- ► This assumes that it is clear to the reader that "≤" is a function from ℤ × ℤ to ℝ, *i.e.*, "≤" is a binary **relation** (rather than a binary **function** or **operation**). As a binary relation, we can write:

 $\leqslant \subseteq \mathbb{Z} \times \mathbb{Z}.$

- Sometimes in a multi-sorted algebraic structure, such as (ℤ, 𝔅, ≤, +, ·), we omit the Boolean carrier 𝔅 for brevity and simply write (ℤ, ≤, +, ·).
- This assumes that it is clear to the reader that "≤" is a function from Z × Z to B, *i.e.*, "≤" is a binary **relation** (rather than a binary **function** or **operation**). As a binary relation, we can write: ≤ ⊆ Z × Z.
- Strictly speaking, a structure such as (ℤ, ≤, +, ·), which now includes operations as well as relations, is called a relational structure rather than just an algebraic structure.

- Sometimes in a multi-sorted algebraic structure, such as (ℤ, 𝔅, ≤, +, ·), we omit the Boolean carrier 𝔅 for brevity and simply write (ℤ, ≤, +, ·).
- This assumes that it is clear to the reader that "≤" is a function from Z × Z to B, *i.e.*, "≤" is a binary **relation** (rather than a binary **function** or **operation**). As a binary relation, we can write: ≤ ⊆ Z × Z.
- Strictly speaking, a structure such as (ℤ, ≤, +, ·), which now includes operations as well as relations, is called a relational structure rather than just an algebraic structure.
- But the transition from algebraic structures to more general relational structures is not demarcated sharply.
- In particular, if a struture A includes one or two relations with standard meanings (such as "≤"), we can continue to call A an algebraic structure.

Posets: definitions and examples

A partially ordered set, or poset for short, is a set P with a partial ordering ≤ on P, *i.e.*, for all a, b, c ∈ P, the ordering ≤ satisfies:

$$a \leq a$$
" \trianglelefteq is reflexive" $(a \leq b \text{ and } b \leq a)$ imply $a = b$ " \trianglelefteq is anti-symmetric" $(a \leq b \text{ and } b \leq c)$ imply $a \leq c$ " \trianglelefteq is transitive"

The ordering \trianglelefteq is **total** if it also satisfies for all $a, b \in P$:

 $(a \leq b)$ or $(b \leq a)$

Posets: definitions and examples

A partially ordered set, or poset for short, is a set P with a partial ordering ≤ on P, *i.e.*, for all a, b, c ∈ P, the ordering ≤ satisfies:

$$a \leq a$$
" \trianglelefteq is reflexive" $(a \leq b \text{ and } b \leq a)$ imply $a = b$ " \trianglelefteq is anti-symmetric" $(a \leq b \text{ and } b \leq c)$ imply $a \leq c$ " \trianglelefteq is transitive"

The ordering \trianglelefteq is **total** if it also satisfies for all $a, b \in P$:

 $(a \trianglelefteq b)$ or $(b \trianglelefteq a)$

Examples of posets:

(1) $(2^{A}, \trianglelefteq)$ where *A* is a non-empty set and \trianglelefteq is \subseteq , (2) $(\mathbb{N} - \{0\}, \trianglelefteq)$ where $m \trianglelefteq n$ iff "*m* divides *n*", (3) $(\mathbb{N}, \trianglelefteq)$ where \trianglelefteq is the usual ordering \leqslant .

In (1) and (2), \trianglelefteq is **not total**; in (3), \trianglelefteq is **total**.

Lattices: definitions and examples

- An lattice L is an algebraic structure (L, ≤, ∨, ∧) where ∨ and ∧ are binary operations, and ≤ is a binary relation, such that:
 - (L, \leq) is a poset,
 - ▶ for all $a, b \in L$, the **least upper bound** of *a* and *b* in the ordering \trianglelefteq
 - exists,
 - is unique,
 - ► and is the result of the operation "a ∨ b",
 - ▶ for all $a, b \in L$, the greatest lower bound of a and b in \trianglelefteq
 - exists,
 - is unique,
 - and is the result of the operation " $a \wedge b$ ".

Lattices: definitions and examples

- An lattice L is an algebraic structure (L, ≤, ∨, ∧) where ∨ and ∧ are binary operations, and ≤ is a binary relation, such that:
 - (L, \leq) is a poset,
 - ▶ for all $a, b \in L$, the **least upper bound** of *a* and *b* in the ordering \trianglelefteq
 - exists,
 - is unique,
 - ► and is the result of the operation "a ∨ b",
 - ▶ for all $a, b \in L$, the greatest lower bound of a and b in \trianglelefteq
 - exists,
 - is unique,
 - ► and is the result of the operation "a ∧ b".
- Examples of lattices:
 - $\blacktriangleright \quad (2^A,\,\trianglelefteq\,,\lor,\land) \qquad \text{where} \ \trianglelefteq \ \text{is}\subseteq, \ \lor \ \text{is}\cup, \ \land \ \text{is}\cap$

Lattices: definitions and examples

- An lattice L is an algebraic structure (L, ≤, ∨, ∧) where ∨ and ∧ are binary operations, and ≤ is a binary relation, such that:
 - (L, \leq) is a poset,
 - ▶ for all $a, b \in L$, the **least upper bound** of *a* and *b* in the ordering \trianglelefteq
 - exists,
 - is unique,
 - ► and is the result of the operation "a ∨ b",
 - ▶ for all $a, b \in L$, the greatest lower bound of a and b in \trianglelefteq
 - exists,
 - is unique,
 - ► and is the result of the operation "a ∧ b".
- Examples of lattices:
 - $\blacktriangleright \quad (2^A,\,\trianglelefteq\,,\lor,\land) \qquad \text{where} \ \trianglelefteq \ \text{is}\subseteq, \ \lor \ \text{is}\cup, \ \land \ \text{is}\cap$

►
$$(\mathbb{N} - \{0\}, \leq , \lor, \land)$$

where $m \leq n$ iff "*m* divides *n*", \lor is "lcm", \land is "gcd"

Distributive Lattices: definitions and examples

A lattice L = (L, ⊴, ∨, ∧) is a distributive lattice if for all a, b, c ∈ L, the following equations – also called axioms or equational axioms – are satisfied:

$$\begin{aligned} a \wedge (b \lor c) &= (a \land b) \lor (a \land c) & \text{``} \land \text{''} \text{ distributes over ``} \lor \text{''} \\ a \lor (b \land c) &= (a \lor b) \land (a \lor c) & \text{``} \lor \text{''} \text{ distributes over ``} \land \text{''} \end{aligned}$$

Distributive Lattices: definitions and examples

A lattice L = (L, ⊴, ∨, ∧) is a distributive lattice if for all a, b, c ∈ L, the following equations – also called axioms or equational axioms – are satisfied:

$$\begin{aligned} a \wedge (b \lor c) &= (a \wedge b) \lor (a \wedge c) & \text{``} \land \text{''} \text{ distributes over ``} \lor \\ a \lor (b \wedge c) &= (a \lor b) \land (a \lor c) & \text{``} \lor \text{''} \text{ distributes over ``} \land \text{''} \end{aligned}$$

Example of a distributive lattice:

 $(2^A,\subseteq,\cup,\cap)$

Distributive Lattices: definitions and examples

A lattice L = (L, ⊴, ∨, ∧) is a distributive lattice if for all a, b, c ∈ L, the following equations – also called axioms or equational axioms – are satisfied:

$$a \wedge (b \lor c) = (a \wedge b) \lor (a \wedge c)$$
 " \land " distributes over " \lor "
 $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ " \lor " distributes over " \land "

Example of a distributive lattice:

 $(2^A,\subseteq,\cup,\cap)$

Is the following an example of a distributive lattice?

 $(\mathbb{N} - \{0\},$ "-- divides --", lcm, gcd)

 For more details on posets and lattices, go to the Web: here (Hasse diagrams), here (distributive lattices), and here.

A bounded lattice is an algebraic structure of the form

$$\mathcal{L} = (L, \trianglelefteq, \lor, \land, \bot, \top)$$

where \perp and \top are **nullary** (or **0-ary**) **operations** on *L* (or, equivalently, **elements** in *L*) such that:

1. $\mathcal{L} = (L, \ \trianglelefteq, \lor, \land)$ is a lattice,

2.
$$\perp \trianglelefteq a$$
 or, equivalently, $\perp \land a = \bot$ for every $a \in L$,

3. $a \trianglelefteq \top$ or, equivalently, $a \lor \top = \top$ for every $a \in L$.

The elements \perp and \top are uniquely defined. \perp is the **minimum** element, and \top is the **maximum** element, of the bounded lattice.

A bounded lattice is an algebraic structure of the form

$$\mathcal{L} = (L, \trianglelefteq, \lor, \land, \bot, \top)$$

where \perp and \top are **nullary** (or **0-ary**) **operations** on *L* (or, equivalently, **elements** in *L*) such that:

1. $\mathcal{L} = (L, \ \trianglelefteq, \lor, \land)$ is a lattice,

2.
$$\perp \trianglelefteq a$$
 or, equivalently, $\perp \land a = \bot$ for every $a \in L$,

3. $a \trianglelefteq \top$ or, equivalently, $a \lor \top = \top$ for every $a \in L$.

The elements \perp and \top are uniquely defined. \perp is the **minimum** element, and \top is the **maximum** element, of the bounded lattice.

► Example of a bounded lattice:
$$(2^A, \subseteq, \cup, \cap, \varnothing, A)$$

A bounded lattice is an algebraic structure of the form

$$\mathcal{L} = (L, \trianglelefteq, \lor, \land, \bot, \top)$$

where \perp and \top are **nullary** (or **0-ary**) **operations** on *L* (or, equivalently, **elements** in *L*) such that:

1. $\mathcal{L} = (L, \ \trianglelefteq, \lor, \land)$ is a lattice,

2.
$$\perp \trianglelefteq a$$
 or, equivalently, $\perp \land a = \bot$ for every $a \in L$,

3. $a \trianglelefteq \top$ or, equivalently, $a \lor \top = \top$ for every $a \in L$.

The elements \perp and \top are uniquely defined. \perp is the **minimum** element, and \top is the **maximum** element, of the bounded lattice.

- Example of a bounded lattice: $(2^A, \subseteq, \cup, \cap, \emptyset, A)$
- Example a lattice with a minimum, but no maximum:

$$(\mathbb{N}-\{0\},$$
 "_- divides _-", lcm, gcd, $1 \over 4)$

▶ Let $\mathcal{L} = (L, \trianglelefteq, \lor, \land, \bot, \top)$ be a bounded lattice. An element $a \in L$ has a complement $b \in L$ iff:

 $a \wedge b = \bot$ and $a \vee b = \top$

FACT: In a **bounded distributive lattice**, **complements** are uniquely defined, *i.e.*, an element $a \in L$ cannot have more than one complement $b \in L$.

Proof. Exercise.

Complemented Lattices: definitions and examples

A complemented lattice is a bounded distributive lattice
L = (L, ≤, ∨, ∧, ⊥, ⊤) where every element has a complement.

Complemented Lattices: definitions and examples

- A complemented lattice is a bounded distributive lattice
 L = (L, ⊴, ∨, ∧, ⊥, ⊤) where every element has a complement.
- ► Example of a complemented lattice: $(2^A, \subseteq, \cup, \cap, \emptyset, A)$
- Again, for more details various kinds of lattices, go to the Web: here (Hasse diagrams), here (distributive lattices), here (lattices).

A complemented lattice L = (L, ≤, ∨, ∧, ⊥, ⊤) is almost a Boolean algebra, but not quite!

What is missing is an **additional operation** on *L* to map an element $a \in L$ to its **complement**.

A complemented lattice L = (L, ≤, ∨, ∧, ⊥, ⊤) is almost a Boolean algebra, but not quite!

What is missing is an **additional operation** on *L* to map an element $a \in L$ to its **complement**.

A <u>first definition</u> of a Boolean algebra:

$$\mathcal{L} = (L, \trianglelefteq, \lor, \land, \bot, \top, \neg)$$

A complemented lattice L = (L, ≤, ∨, ∧, ⊥, ⊤) is almost a Boolean algebra, but not quite!

What is missing is an **additional operation** on *L* to map an element $a \in L$ to its **complement**.

A <u>first definition</u> of a Boolean algebra:

$$\mathcal{L} = (L, \trianglelefteq, \lor, \land, \bot, \top, \neg)$$

- 1. $\mathcal{L} = (L, \leq, \lor, \land, \bot, \top)$ is a complemented lattice,
- The new operation "¬" is **unary** and maps every *a* ∈ *L* to its complement, *i.e.*:

$$a \wedge (\neg a) = \bot$$
 and $a \vee (\neg a) = \top$

A second definition of a Boolean algebra

(easier to compare with Heyting algebras later) :

$$\mathcal{L} = (L, \trianglelefteq, \lor, \land, \bot, \top, \overrightarrow{\uparrow})$$

A second definition of a Boolean algebra

(easier to compare with Heyting algebras later) :

$$\mathcal{L} = (L, \leq , \lor, \land, \bot, \top, \xrightarrow{\uparrow})$$

- 1. $\mathcal{L} = (L, \trianglelefteq, \lor, \land, \bot, \top)$ is a complemented lattice,
- 2. The new operation " \rightarrow " is **binary** such that $(a \rightarrow \bot)$ is the complement of *a*, for every every $a \in L$.

A second definition of a Boolean algebra

(easier to compare with Heyting algebras later) :

$$\mathcal{L} = (L, \leq , \lor, \land, \bot, \top, \xrightarrow{\uparrow})$$

where:

- 1. $\mathcal{L} = (L, \trianglelefteq, \lor, \land, \bot, \top)$ is a complemented lattice,
- 2. The new operation " \rightarrow " is **binary** such that $(a \rightarrow \bot)$ is the complement of *a*, for every every $a \in L$.
- ► FACT: The two preceding definitions of Boolean algebras are equivalent because we can define "→" in terms of {∨, ¬}:

$$a \to b := (\neg a) \lor b$$

as well as define " \neg " in terms of $\{\rightarrow, \bot\}$:

$$\neg a := a \rightarrow \bot$$

Assaf Kfoury, CS 512, Spring 2017, Handout 20

- Examples of Boolean algebras:
 - ► For an arbitrary non-empty set *A*:

 $(2^A,\subseteq,\cup,\cap,\varnothing,A,{}^-)$

where $\overline{X} = A - X$ for every $X \subseteq A$.

- Examples of Boolean algebras:
 - ► For an arbitrary non-empty set *A*:

 $(2^A,\subseteq,\cup,\cap,\varnothing,A,{}^-)$

where $\overline{X} = A - X$ for every $X \subseteq A$.

The standard 2-element Boolean algebra:

 $(\{0,1\},\leqslant,\lor,\land,0,1,\neg) \quad \text{or} \quad (\{0,1\},\leqslant,\lor,\land,0,1,\rightarrow)$

where we write "0" for **F** and "1" for **T**.

A Heyting algebra is an algebraic structure of the form

$$\mathcal{L} = (L, \trianglelefteq, \lor, \land, \bot, \top, \overrightarrow{})$$

A Heyting algebra is an algebraic structure of the form

$$\mathcal{L} = (L, \trianglelefteq, \lor, \land, \bot, \top, \xrightarrow{\uparrow})$$

where:

L = (L, ≤, ∨, ∧, ⊥, ⊤) is a bounded distributive lattice – not necessarily a complemented lattice,

A Heyting algebra is an algebraic structure of the form

$$\mathcal{L} = (L, \trianglelefteq, \lor, \land, \bot, \top, \overrightarrow{\uparrow})$$

- L = (L, ⊴, ∨, ∧, ⊥, ⊤) is a bounded distributive lattice not necessarily a complemented lattice,
- The new operation " \rightarrow " is **binary** and satisfies the **equations**:

1.
$$a \rightarrow a = \top$$

2. $a \wedge (a \rightarrow b) = a \wedge b$
3. $a \rightarrow (b \wedge c) = (a \rightarrow b) \wedge (a \rightarrow c)$
4. $b \leq a \rightarrow b$

A Heyting algebra is an algebraic structure of the form

$$\mathcal{L} = (L, \trianglelefteq, \lor, \land, \bot, \top, \overrightarrow{})$$

where:

- L = (L, ⊴, ∨, ∧, ⊥, ⊤) is a bounded distributive lattice not necessarily a complemented lattice,
- The new operation " \rightarrow " is **binary** and satisfies the **equations**:

1.
$$a \rightarrow a = \top$$

2. $a \wedge (a \rightarrow b) = a \wedge b$
3. $a \rightarrow (b \wedge c) = (a \rightarrow b) \wedge (a \rightarrow c)$
4. $b \leq a \rightarrow b$

FACT: The preceding equations uniquely define the operation " \rightarrow ". *Proof.* Exercise.

A Heyting algebra is an algebraic structure of the form

$$\mathcal{L} = (L, \trianglelefteq, \lor, \land, \bot, \top, \overrightarrow{})$$

where:

- L = (L, ⊴, ∨, ∧, ⊥, ⊤) is a bounded distributive lattice not necessarily a complemented lattice,
- The new operation " \rightarrow " is **binary** and satisfies the **equations**:

1.
$$a \rightarrow a = \top$$

2. $a \wedge (a \rightarrow b) = a \wedge b$
3. $a \rightarrow (b \wedge c) = (a \rightarrow b) \wedge (a \rightarrow c)$
4. $b \leq a \rightarrow b$

FACT: The preceding equations uniquely define the operation " \rightarrow ". *Proof.* Exercise.

FACT: Every Boolean algebra is a Heyting algebra. *Proof.* Exercise.