CS 512, Spring 2017, Handout 23 Extended Example in First-Order Logic

Assaf Kfoury

March 27, 2017

Assaf Kfoury, CS 512, Spring 2017, Handout 23

several structures over the domain \mathbb{N} (assume " \doteq " is available)

structures over the domain of natural numbers	vocabular predicate symbols	y/signature function symbols
$\mathcal{N} riangleq (\mathbb{N},0,S)$	$\mathscr{P}=\varnothing$	$\mathscr{F} = \{0, S\}$
$\mathcal{N}_1 riangleq (\mathbb{N}, 0, S, <)$	$\mathscr{P} = \{<\}$	$\mathscr{F} = \{0,S\}$
$\mathcal{N}_2 riangleq (\mathbb{N}, 0, S, <, +)$	$\mathscr{P} = \{<\}$	$\mathscr{F} = \{0,S,+\}$
$\mathcal{N}_3 riangleq (\mathbb{N}, 0, S, <, +, \cdot)$	$\mathscr{P} = \{<\}$	$\mathscr{F} = \{0, S, +, \cdot\}$
$\mathcal{N}_4 \triangleq (\mathbb{N}, 0, S, <, +, \cdot, pr)$ $pr(x) \triangleq true iff x is prime$	$\mathscr{P} = \{<, pr\}$	$\mathscr{F} = \{0, S, +, \cdot\}$
$\mathcal{N}_5 \triangleq (\mathbb{N}, 0, S, <, +, \cdot, pr, \uparrow) \ x \uparrow y \triangleq x^y$	$\mathscr{P} = \{<,pr\}$	$\mathscr{F} = \{0, \mathcal{S}, +, \cdot, \uparrow\}$
$\mathcal{N}_6 \triangleq \cdots$		

Question: Is a new predicate (function) definable from earlier ones?

every number n is definable from 0 and S:

$$1 \stackrel{\triangle}{=} S(0)$$

$$2 \stackrel{\triangle}{=} S(S(0))$$

$$3 \stackrel{\triangle}{=} S(S(S(0)))$$

$$\dots$$

$$n \stackrel{\triangle}{=} \underbrace{S(\dots S(0) \dots)}_{n}$$

every number n is definable from 0 and S:

$$1 \stackrel{\triangle}{=} S(0)$$

$$2 \stackrel{\triangle}{=} S(S(0))$$

$$3 \stackrel{\triangle}{=} S(S(S(0)))$$

$$\dots$$

$$n \stackrel{\triangle}{=} \underbrace{S(\dots S(0) \dots)}_{n}$$

▶ "S" is definable from "+":

for all $m, n \in \mathbb{N}$, we have S(m) = n iff m + 1 = n

every number n is definable from 0 and S:

$$1 \stackrel{\triangle}{=} S(0)$$

$$2 \stackrel{\triangle}{=} S(S(0))$$

$$3 \stackrel{\triangle}{=} S(S(S(0)))$$

$$\dots$$

$$n \stackrel{\triangle}{=} \underbrace{S(\dots S(0) \dots)}_{n}$$

▶ "S" is definable from "+":

for all $m, n \in \mathbb{N}$, we have S(m) = n iff m + 1 = n

formally: the sentence $\forall x \forall y (S(x) \doteq y \leftrightarrow x + 1 \doteq y)$ is true in \mathcal{N}_2 , which implies the graph of $S^{\mathcal{N}_2}$ is defined by the WFF $(x + 1 \doteq y)$.

every number n is definable from 0 and S:

$$1 \stackrel{\triangle}{=} S(0)$$

$$2 \stackrel{\triangle}{=} S(S(0))$$

$$3 \stackrel{\triangle}{=} S(S(S(0)))$$

$$\dots$$

$$n \stackrel{\triangle}{=} \underbrace{S(\dots S(0) \dots)}_{n}$$

▶ "S" is definable from "+":

for all $m, n \in \mathbb{N}$, we have S(m) = n iff m + 1 = n

formally: the sentence $\forall x \forall y (S(x) \doteq y \leftrightarrow x + 1 \doteq y)$ is true in \mathcal{N}_2 , which implies the graph of $S^{\mathcal{N}_2}$ is defined by the WFF $(x + 1 \doteq y)$.

• is "+" definable from "S"? perhaps ...

every number n is definable from 0 and S:

$$1 \stackrel{\triangle}{=} S(0)$$

$$2 \stackrel{\triangle}{=} S(S(0))$$

$$3 \stackrel{\triangle}{=} S(S(S(0)))$$

$$\dots$$

$$n \stackrel{\triangle}{=} \underbrace{S(\dots S(0) \dots)}_{n}$$

for all $m, n \in \mathbb{N}$, we have S(m) = n iff m + 1 = nformally: the sentence $\forall x \forall y (S(x) \doteq y \leftrightarrow x + 1 \doteq y)$ is true in \mathcal{N}_2 , which implies the graph of $S^{\mathcal{N}_2}$ is defined by the WFF $(x + 1 \doteq y)$.

for all
$$m, n, p \in \mathbb{N}$$
, we have $m + n = p$ iff $\underbrace{S(\cdots S(m) \cdots)}_{n} = p$

every number n is definable from 0 and S:

$$1 \stackrel{\triangle}{=} S(0)$$

$$2 \stackrel{\triangle}{=} S(S(0))$$

$$3 \stackrel{\triangle}{=} S(S(S(0)))$$

$$\dots$$

$$n \stackrel{\triangle}{=} \underbrace{S(\dots S(0) \dots)}_{n}$$

for all $m, n \in \mathbb{N}$, we have S(m) = n iff m + 1 = nformally: the sentence $\forall x \forall y (S(x) \doteq y \leftrightarrow x + 1 \doteq y)$ is true in \mathcal{N}_2 , which implies the graph of $S^{\mathcal{N}_2}$ is defined by the WFF $(x + 1 \doteq y)$.

for all $m, n, p \in \mathbb{N}$, we have m + n = p iff $\underbrace{S(\dots S(m) \dots)}_{n} = p$ "formally": $\forall x \forall y \forall z [\underbrace{S(\dots S(x) \dots)}_{y} \doteq z \leftrightarrow x + y \doteq z]$

Assaf Kfoury, CS 512, Spring 2017, Handout 23

1. FACT

"+" is **NOT** (first-order) definable from "0" and "S" (difficult!)

1. FACT

"+" is **NOT** (first-order) definable from "0" and "S" (difficult!)

2. FACT

"<" is (first-order) definable from "+" (easy: try it!)

1. FACT

"+" is **NOT** (first-order) definable from "0" and "S" (difficult!)

2. **FACT**

"<" is (first-order) definable from "+" (easy: try it!)

3. **FACT**

"+" is **NOT** (first-order) definable from "<", "0", and "S" (difficult!)

1. FACT

"+" is **NOT** (first-order) definable from "0" and "S" (difficult!)

2. **FACT**

"<" is (first-order) definable from "+" (easy: try it!)

3. **FACT**

"+" is **NOT** (first-order) definable from "<", "0", and "S" (difficult!)

4. FACT

"." is **NOT** (first-order) definable from "0", "*S*", and "+" (no need to mention "<") (*difficult!*)

1. FACT

"+" is **NOT** (first-order) definable from "0" and "S" (difficult!)

2. **FACT**

"<" is (first-order) definable from "+" (easy: try it!)

3. **FACT**

"+" is **NOT** (first-order) definable from "<", "0", and "S" (difficult!)

4. FACT

"." is **NOT** (first-order) definable from "0", "*S*", and "+" (no need to mention "<") (*difficult!*)

5. **FACT**

"+" is (first-order) definable from "<" and "." (tricky: try hint below!)

1. FACT

"+" is **NOT** (first-order) definable from "0" and "S" (difficult!)

2. FACT

"<" is (first-order) definable from "+" (easy: try it!)

3. **FACT**

"+" is **NOT** (first-order) definable from "<", "0", and "S" (difficult!)

4. FACT

"·" is **NOT** (first-order) definable from "0", "*S*", and "+" (no need to mention "<") (*difficult!*)

5. FACT

"+" is (first-order) definable from "<" and "." (tricky: try hint below!)

Hint. Use the following equivalence for all $m, n, p \in \mathbb{N}$ $(p = 0) \lor (p = m + n)$ iff $(m \cdot p + 1) \cdot (n \cdot p + 1) = p^2 \cdot (m \cdot n + 1) + 1$

• is "pr" definable from $\{0, S, <, +, \cdot\}$?

▶ is "pr" definable from
$$\{0, S, <, +, \cdot\}$$
?
YES pr(*n*) is true iff $\varphi(n)$ is true, where $\varphi(x)$ is the WFF
 $\varphi(x) \triangleq \neg(x \doteq 1) \land \forall y \forall z [(x \doteq y \cdot z) \rightarrow (y \doteq 1 \lor z \doteq 1)]$

• is " \uparrow " definable from $\{0, S, <, +, \cdot\}$?

► is "pr" definable from
$$\{0, S, <, +, \cdot\}$$
?
YES pr(*n*) is true iff $\varphi(n)$ is true, where $\varphi(x)$ is the WFF
 $\varphi(x) \triangleq \neg(x \doteq 1) \land \forall y \forall z [(x \doteq y \cdot z) \rightarrow (y \doteq 1 \lor z \doteq 1)]$

is "↑" definable from {0, S, <, +, ·}?
 YES m = n ↑ p iff φ(m, n, p) is true, where φ(x, y, z) is the WFF ... (not very difficult: try it!)