
CS 512, Spring 2017, Handout 25

Gilmore’s Algorithm

Assaf Kfoury

April 2, 2017

Assaf Kfoury, CS 512, Spring 2017, Handout 25 page 1 of 13



review and reminders (run simultaneously with an example on the board)

From the handout Compactness+Completeness (click here to retrieve it):

I If ϕ is a first-order sentence, then Θpr,sk(ϕ) is its Skolem form.

I In particular, Θpr,sk(ϕ) is a universal first-order sentence, i.e., it is in
prenex normal form and all the quantifiers in its prenex are universal.

I ϕ and Θpr,sk(ϕ) are equisatisfiable
(Lemma 21 in Compactness+Completeness).

I Gr Expansion
(
Θpr,sk(ϕ)

)
is obtained by deleting the prenex of Θpr,sk(ϕ)

and substituting ground terms for variables in the matrix of Θpr,sk(ϕ).

I ϕ and Gr Expansion
(
Θpr,sk(ϕ)

)
are equisatisfiable

(Lemma 28 in Compactness+Completeness).

I X
(
Gr Expansion

(
Θpr,sk(ϕ)

))
is obtained by replacing every ground atom

α in Gr Expansion
(
Θpr,sk(ϕ)

)
by a propositional variable Xα.

I
ϕ is satisfiable (in first-order logic) iff
X
(
Gr Expansion

(
Θpr,sk(ϕ)

))
is satisfiable (in propositional logic).

(Theorem 32 in Compactness+Completeness).
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I
ϕ is satisfiable (in first-order logic) iff
X
(
Gr Expansion

(
Θpr,sk(ϕ)

))
is finitely satisfiable (in prop logic).

(Theorem 2 in Compactness+Completeness)

I Contrapositively:
ϕ is not satisfiable (in first-order logic) iff
there is a finite subset of X

(
Gr Expansion

(
Θpr,sk(ϕ)

))
which is

not satisfiable (in propositional logic).

I Recall that a first-order sentence ψ is valid iff ¬ψ is not satisfiable .

Suppose we want to test whether a first-order sentence ψ is valid. Let

X
(
Gr Expansion

(
Θpr,sk( ¬ ψ)

))
= {θ1, θ2, θ3, . . .}

Note the inserted logical negation “¬”. All the θi’s are propositional WFF’s.

I
ψ is valid (in first-order logic) iff
there is a finite subset of {θ1, θ2, θ3, . . .} which is not satisfiable
(in propositional logic).
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Gilmore’s algorithm
1. input: first-order sentence ψ to be tested for validity ;

2. k := 0;

3. repeat k := k + 1

until
∧

16i6k θi is unsatisfiable;

4. output: ψ is valid;

I Fact: Gilmore’s algorithm terminates iff the input sentence ψ is valid.

I Major Drawback: Gilmore’s algorithm is highly inefficient, its
performance depends on the order in which the θi’s are generated.

Exercise: Let ϕ1, . . . , ϕn and ψ be first-order sentences.
Define an algorithm based on Gilmore’s algorithm which terminates iff the
semantic entailment ϕ1, . . . , ϕn |= ψ holds.

Problem: Can you define an algorithm A which, given a first-order sentence ψ,
always terminates and decides whether ψ is valid or not valid?
Hint: No.

Assaf Kfoury, CS 512, Spring 2017, Handout 25 page 9 of 13



Gilmore’s algorithm
1. input: first-order sentence ψ to be tested for validity ;

2. k := 0;

3. repeat k := k + 1

until
∧

16i6k θi is unsatisfiable;

4. output: ψ is valid;

I Fact: Gilmore’s algorithm terminates iff the input sentence ψ is valid.

I Major Drawback: Gilmore’s algorithm is highly inefficient, its
performance depends on the order in which the θi’s are generated.

Exercise: Let ϕ1, . . . , ϕn and ψ be first-order sentences.
Define an algorithm based on Gilmore’s algorithm which terminates iff the
semantic entailment ϕ1, . . . , ϕn |= ψ holds.

Problem: Can you define an algorithm A which, given a first-order sentence ψ,
always terminates and decides whether ψ is valid or not valid?
Hint: No.

Assaf Kfoury, CS 512, Spring 2017, Handout 25 page 10 of 13



Gilmore’s algorithm
1. input: first-order sentence ψ to be tested for validity ;

2. k := 0;

3. repeat k := k + 1

until
∧

16i6k θi is unsatisfiable;

4. output: ψ is valid;

I Fact: Gilmore’s algorithm terminates iff the input sentence ψ is valid.

I Major Drawback: Gilmore’s algorithm is highly inefficient, its
performance depends on the order in which the θi’s are generated.

Exercise: Let ϕ1, . . . , ϕn and ψ be first-order sentences.
Define an algorithm based on Gilmore’s algorithm which terminates iff the
semantic entailment ϕ1, . . . , ϕn |= ψ holds.

Problem: Can you define an algorithm A which, given a first-order sentence ψ,
always terminates and decides whether ψ is valid or not valid?
Hint: No.

Assaf Kfoury, CS 512, Spring 2017, Handout 25 page 11 of 13



Gilmore’s algorithm
I Gilmore’s algorithm is said to be a semi-decision procedure , because it

terminates only if the input ψ is valid.

I Gilmore’s algorithm was invented in the late 1950’s and it was the best
semi-decision procedure for first-order validity until the mid-1960’s, when
more efficient early versions of the tableaux and resolution methods
were first introduced.
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