CS 512, Spring 2017, Handout 25 Gilmore's Algorithm

Assaf Kfoury

April 2, 2017

From the handout *Compactness+Completeness* (click here to retrieve it):

- If φ is a first-order sentence, then $\Theta_{\mathrm{pr,sk}}(\varphi)$ is its Skolem form.
- In particular, $\Theta_{\text{pr,sk}}(\varphi)$ is a universal first-order sentence, *i.e.*, it is in prenex normal form and all the quantifiers in its prenex are universal.
- $ightharpoonup \varphi$ and $\Theta_{\mathrm{pr,sk}}(\varphi)$ are equisatisfiable (Lemma 21 in *Compactness+Completeness*).

From the handout *Compactness+Completeness* (click here to retrieve it):

- If φ is a first-order sentence, then $\Theta_{\mathrm{pr,sk}}(\varphi)$ is its Skolem form.
- In particular, $\Theta_{pr,sk}(\varphi)$ is a universal first-order sentence, *i.e.*, it is in prenex normal form and all the quantifiers in its prenex are universal.
- ightharpoonup arphi and $\Theta_{\mathrm{pr,sk}}(arphi)$ are equisatisfiable (Lemma 21 in *Compactness+Completeness*).
- ▶ Gr_Expansion $(\Theta_{\text{pr,sk}}(\varphi))$ is obtained by deleting the prenex of $\Theta_{\text{pr,sk}}(\varphi)$ and substituting ground terms for variables in the matrix of $\Theta_{\text{pr,sk}}(\varphi)$.

review and reminders (run simultaneous

(run simultaneously with an example on the board)

From the handout *Compactness+Completeness* (click here to retrieve it):

- If φ is a first-order sentence, then $\Theta_{\mathrm{pr,sk}}(\varphi)$ is its Skolem form.
- In particular, $\Theta_{pr,sk}(\varphi)$ is a universal first-order sentence, *i.e.*, it is in prenex normal form and all the quantifiers in its prenex are universal.
- $ightharpoonup \varphi$ and $\Theta_{\mathrm{pr,sk}}(\varphi)$ are equisatisfiable (Lemma 21 in *Compactness+Completeness*).
- ▶ Gr_Expansion $(\Theta_{\text{pr,sk}}(\varphi))$ is obtained by deleting the prenex of $\Theta_{\text{pr,sk}}(\varphi)$ and substituting ground terms for variables in the matrix of $\Theta_{\text{pr,sk}}(\varphi)$.
- $\varphi \text{ and Gr_Expansion}\big(\Theta_{\mathrm{pr,sk}}(\varphi)\big) \text{ are equisatisfiable } \\ \text{(Lemma 28 in } \textit{Compactness+Completeness)}.$
- $m{\mathcal{X}}ig(\mathrm{Gr_Expansion}ig(m{\Theta}_{\mathrm{pr,sk}}(arphi)ig) ig)$ is obtained by replacing every ground atom lpha in $\mathrm{Gr_Expansion}ig(m{\Theta}_{\mathrm{pr,sk}}(arphi)ig)$ by a propositional variable X_lpha .
- φ is satisfiable (in first-order logic) iff $\mathcal{X}\left(\operatorname{Gr_Expansion}\left(\boldsymbol{\Theta}_{\operatorname{pr,sk}}(\varphi)\right)\right)$ is satisfiable (in propositional logic). (Theorem 32 in Compactness+Completeness).

arphi is satisfiable (in first-order logic) iff $\mathcal{X}\left(\operatorname{Gr_Expansion}\left(\boldsymbol{\varTheta}_{\operatorname{pr,sk}}(arphi)\right)\right)$ is $\underline{\mathbf{finitely}}$ satisfiable (in prop logic). (Theorem 2 in Compactness+Completeness)

- φ is satisfiable (in first-order logic) iff $\mathcal{X}\left(\operatorname{Gr_Expansion}\left(\boldsymbol{\Theta}_{\operatorname{pr,sk}}(\varphi)\right)\right)$ is **finitely** satisfiable (in prop logic). (Theorem 2 in *Compactness+Completeness*)
- Contrapositively:

 φ is <u>not</u> satisfiable (in first-order logic) iff there is a <u>finite</u> subset of $\mathcal{X} \big(\text{Gr_Expansion} \big(\boldsymbol{\Theta}_{\text{pr,sk}} (\varphi) \big) \big)$ which is **not** satisfiable (in propositional logic).

- φ is satisfiable (in first-order logic) iff $\mathcal{X}\left(\operatorname{Gr_Expansion}\left(\boldsymbol{\Theta}_{\operatorname{pr,sk}}(\varphi)\right)\right)$ is $\underline{\operatorname{finitely}}$ satisfiable (in prop logic). (Theorem 2 in Compactness+Completeness)
- Contrapositively:

 φ is <u>not</u> satisfiable (in first-order logic) iff there is a <u>finite</u> subset of $\mathcal{X} ig(\text{Gr_Expansion} ig(\Theta_{\text{pr,sk}}(\varphi) ig) ig)$ which is <u>not</u> satisfiable (in propositional logic).

▶ Recall that a first-order sentence ψ is **valid** iff $\neg \psi$ is **not** satisfiable .

Suppose we want to test whether a first-order sentence ψ is valid. Let

$$\mathcal{X}(\mathsf{Gr}_{\mathsf{L}}\mathsf{Expansion}(\boldsymbol{\Theta}_{\mathsf{pr},\mathsf{sk}}(\mathbf{\neg \psi}))) = \{\theta_1,\ \theta_2,\ \theta_3,\ldots\}$$

Note the inserted logical negation " \neg ". All the θ_i 's are propositional WFF's.

- (run simultaneously with an example on the board)
- φ is satisfiable (in first-order logic) iff $\mathcal{X}\left(\operatorname{Gr_Expansion}\left(\boldsymbol{\Theta}_{\operatorname{pr,sk}}(\varphi)\right)\right)$ is $\underline{\operatorname{finitely}}$ satisfiable (in prop logic). (Theorem 2 in Compactness+Completeness)
- Contrapositively:

 φ is **not** satisfiable (in first-order logic) iff there is a **finite** subset of $\mathcal{X}(Gr_Expansion(\Theta_{pr.sk}(\varphi)))$ which is **not** satisfiable (in propositional logic).

▶ Recall that a first-order sentence ψ is **valid** iff $\neg \psi$ is **not** satisfiable.

Suppose we want to test whether a first-order sentence ψ is valid. Let

$$\mathcal{X}(\mathsf{Gr}_{\mathsf{L}}\mathsf{Expansion}(\boldsymbol{\Theta}_{\mathsf{pr},\mathsf{sk}}(\mathbf{\neg \psi}))) = \{\theta_1,\ \theta_2,\ \theta_3,\ldots\}$$

Note the inserted logical negation " \neg ". All the θ_i 's are propositional WFF's.

 ψ is **valid** (in first-order logic) iff

there is a **finite** subset of $\{\theta_1, \theta_2, \theta_3, \ldots\}$ which is **not** satisfiable (in propositional logic).

- 1. **input**: first-order sentence ψ to be tested for validity;
- **2**. k := 0;
- 3. repeat k := k + 1

until $\bigwedge_{1 \leq i \leq k} \theta_i$ is unsatisfiable;

4. **output**: ψ is valid;

- 1. **input**: first-order sentence ψ to be tested for validity;
- **2**. k := 0;
- 3. **repeat** k := k + 1

until $\bigwedge_{1 \leq i \leq k} \theta_i$ is unsatisfiable;

- 4. output: ψ is valid;
 - **Fact**: Gilmore's algorithm terminates iff the input sentence ψ is valid.
 - ▶ **Major Drawback**: Gilmore's algorithm is highly inefficient, its performance depends on the order in which the θ_i 's are generated.

- 1. **input**: first-order sentence ψ to be tested for validity;
- **2**. k := 0;
- 3. **repeat** k := k + 1

until $\bigwedge_{1 \leq i \leq k} \theta_i$ is unsatisfiable;

- 4. output: ψ is valid;
 - **Fact**: Gilmore's algorithm terminates iff the input sentence ψ is valid.
 - ▶ **Major Drawback**: Gilmore's algorithm is highly inefficient, its performance depends on the order in which the θ_i 's are generated.

Exercise: Let $\varphi_1, \ldots, \varphi_n$ and ψ be first-order sentences.

Define an algorithm based on Gilmore's algorithm which terminates iff the semantic entailment $\varphi_1, \dots, \varphi_n \models \psi$ holds.

Problem: Can you define an algorithm $\mathcal A$ which, given a first-order sentence ψ , always terminates and decides whether ψ is valid or not valid? *Hint*: No.

- \blacktriangleright Gilmore's algorithm is said to be a semi-decision procedure , because it terminates only if the input ψ is valid.
- Gilmore's algorithm was invented in the late 1950's and it was the best semi-decision procedure for first-order validity until the mid-1960's, when more efficient early versions of the tableaux and resolution methods were first introduced.