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BACKGROUND

I The name “unification” and the first formal investigation of the notion is due
to J.A. Robinson (1965).

I Robinson’s algorithm for first-order unification has exponential
time-complexity in the worst-case.

I The Paterson-Wegman algorithm (1978) for first-order unification has
linear time-complexity, but relatively complicated to implement.

I The Martelli-Montanari algorithm (1982) for first-order unification has a
O(n log n) time-complexity in the worst-case and is somewhat simpler to
implement than the Paterson-Wegman algorithm.

I More information on first-order unification – the only kind we need in this
course – can be found by browsing the Web. In particular, click here for
an informative Wikipedia article.

Problems of unification (and matching) are a rich and thriving area of computer
science. Search the Web for: semi-unification, acyclic semi-unification,
second-order unification, bounded second-order unification, monadic second-order
unification, context unification, stratified context unification, and many other
variants, each resulting from particular applications in computer science.

Assaf Kfoury, CS 512, Spring 2017, Handout 27 page 2 of 7

https://en.wikipedia.org/wiki/Unification_(computer_science)


DEFINITIONS

I An instance of (first-order) unification is a finite set S of equations:

S , {s1
?
= t1, . . . , sn

?
= tn}

where s1, t1, . . . , sn, tn are first-order terms (over a given signature Σ).

I A substitution σ is always given as a mapping σ : X → T where X is the set of
all first-order variables and T is the set of all first-order terms.

Such a substitution σ : X → T is extended to σ : T → T in the usual way.

I A unifier or solution of S is a substitution σ such that σ(si) = σ(ti) for every
i = 1, . . . , n.

I Sol(S) is the set of all unifers or solutions of S. S is unifiable iff Sol(S) 6= ∅.

I A substitution σ is a most general unifier (MGU) of S if σ is a “least” element of
Sol(S), i.e., for every σ′ ∈ Sol(S) there is a substitution σ′′ such that, for all
variable x, it holds that σ′(x) = σ′′(σ(x)) – more succintly written as σ′ = σ′′ ◦ σ.

I Notational Conventions:

1. We may write a substitution σ as the set of its non-trivial bindings, i.e.,
σ = { x 7→ σ(x) | σ(x) 6= x }.

2. In particular, if we write σ = { } (the empty set), then σ is the identity substitution.
3. Whenever convenient and not ambiguous, we write “σ t” instead of “σ(t)”.
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AN ALGORITHM FOR FIRST-ORDER UNIFICATION
I We present an adaptation of the Martelli-Montanari algorithm , one of several available for

first-order unification. (Its O(n log n) time-complexity depends on some clever data
structuring with dag’s – not in this handout.)

I We can view unification as a rewrite system , the goal of which is to repeatedly transform a
finite set of equations until the solution “stares you in the face”.

I According to this view, unification can be carried using six transformation (or rewrite) rules
(where the symbol “]” denotes disjoint union):

[delete] { t ?
= t } ] S =⇒ S

[decompose] { f (s1, . . . , sm)
?
= f (t1, . . . , tm) } ] S =⇒ { s1

?
= t1, . . . , sm

?
= tm } ∪ S

[conflict] { f (s1, . . . , sm)
?
= g(t1, . . . , tn) } ] S =⇒ FAIL

where f 6= g

[orient] { t ?
= x } ] S =⇒ { x ?

= t } ∪ S

where t 6∈ X

[eliminate] { x ?
= t } ] S =⇒ { x ?

= t } ∪ {x 7→ t}(S)
where x 6∈ Var(t) and x ∈ Var(S)

[occurs check] { x ?
= t } ] S =⇒ FAIL

where x ∈ Var(t) and t 6∈ X
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