CS 512, Spring 2017, Handout 27
 Unification

Assaf Kfoury

April 11, 2017

BACKGROUND

- The name "unification" and the first formal investigation of the notion is due to J.A. Robinson (1965).
- Robinson's algorithm for first-order unification has exponential time-complexity in the worst-case.
- The Paterson-Wegman algorithm (1978) for first-order unification has linear time-complexity, but relatively complicated to implement.
- The Martelli-Montanari algorithm (1982) for first-order unification has a $\mathcal{O}(n \log n)$ time-complexity in the worst-case and is somewhat simpler to implement than the Paterson-Wegman algorithm.
- More information on first-order unification - the only kind we need in this course - can be found by browsing the Web. In particular, click here for an informative Wikipedia article.

Problems of unification (and matching) are a rich and thriving area of computer science. Search the Web for: semi-unification, acyclic semi-unification, second-order unification, bounded second-order unification, monadic second-order unification, context unification, stratified context unification, and many other variants, each resulting from particular applications in computer science.

DEFINITIONS

- An instance of (first-order) unification is a finite set S of equations:

$$
S \triangleq\left\{s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}\right\}
$$

where $s_{1}, t_{1}, \ldots, s_{n}, t_{n}$ are first-order terms (over a given signature Σ).

- A substitution σ is always given as a mapping $\sigma: X \rightarrow \mathcal{T}$ where X is the set of all first-order variables and \mathcal{T} is the set of all first-order terms.

Such a substitution $\sigma: X \rightarrow \mathcal{T}$ is extended to $\sigma: \mathcal{T} \rightarrow \mathcal{T}$ in the usual way.

- A unifier or solution of S is a substitution σ such that $\sigma\left(s_{i}\right)=\sigma\left(t_{i}\right)$ for every $i=1, \ldots, n$.
- $\operatorname{Sol}(S)$ is the set of all unifers or solutions of S. S is unifiable iff $\operatorname{Sol}(S) \neq \varnothing$.
- A substitution σ is a most general unifier (MGU) of S if σ is a "least" element of Sol (S), i.e., for every $\sigma^{\prime} \in \operatorname{Sol}(S)$ there is a substitution $\sigma^{\prime \prime}$ such that, for all variable x, it holds that $\sigma^{\prime}(x)=\sigma^{\prime \prime}(\sigma(x))$-more succintly written as $\sigma^{\prime}=\sigma^{\prime \prime} \circ \sigma$.

DEFINITIONS

- An instance of (first-order) unification is a finite set S of equations:

$$
S \triangleq\left\{s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}\right\}
$$

where $s_{1}, t_{1}, \ldots, s_{n}, t_{n}$ are first-order terms (over a given signature Σ).

- A substitution σ is always given as a mapping $\sigma: X \rightarrow \mathcal{T}$ where X is the set of all first-order variables and \mathcal{T} is the set of all first-order terms.

Such a substitution $\sigma: X \rightarrow \mathcal{T}$ is extended to $\sigma: \mathcal{T} \rightarrow \mathcal{T}$ in the usual way.

- A unifier or solution of S is a substitution σ such that $\sigma\left(s_{i}\right)=\sigma\left(t_{i}\right)$ for every $i=1, \ldots, n$.
- $\operatorname{Sol}(S)$ is the set of all unifers or solutions of S. S is unifiable iff $\operatorname{Sol}(S) \neq \varnothing$.
- A substitution σ is a most general unifier (MGU) of S if σ is a "least" element of $\operatorname{Sol}(S)$, i.e., for every $\sigma^{\prime} \in \operatorname{Sol}(S)$ there is a substitution $\sigma^{\prime \prime}$ such that, for all variable x, it holds that $\sigma^{\prime}(x)=\sigma^{\prime \prime}(\sigma(x))$-more succintly written as $\sigma^{\prime}=\sigma^{\prime \prime} \circ \sigma$.
- Notational Conventions:

1. We may write a substitution σ as the set of its non-trivial bindings, i.e., $\sigma=\{x \mapsto \sigma(x) \mid \sigma(x) \neq x\}$.
2. In particular, if we write $\sigma=\{ \}$ (the empty set), then σ is the identity substitution.
3. Whenever convenient and not ambiguous, we write " σt " instead of " $\sigma(t)$ ".

AN ALGORITHM FOR FIRST-ORDER UNIFICATION

- We present an adaptation of the Martelli-Montanari algorithm, one of several available for first-order unification. (Its $\mathcal{O}(n \log n)$ time-complexity depends on some clever data structuring with dag's - not in this handout.)
- We can view unification as a rewrite system, the goal of which is to repeatedly transform a finite set of equations until the solution "stares you in the face".
- According to this view, unification can be carried using six transformation (or rewrite) rules (where the symbol " \uplus " denotes disjoint union):

AN ALGORITHM FOR FIRST-ORDER UNIFICATION

- We present an adaptation of the Martelli-Montanari algorithm , one of several available for first-order unification. (Its $\mathcal{O}(n \log n)$ time-complexity depends on some clever data structuring with dag's - not in this handout.)
- We can view unification as a rewrite system, the goal of which is to repeatedly transform a finite set of equations until the solution "stares you in the face".
- According to this view, unification can be carried using six transformation (or rewrite) rules (where the symbol " \uplus " denotes disjoint union):

[delete]	$\{t \stackrel{?}{=} t\} \uplus S$	S
[decompose]	$\left\{f\left(s_{1}, \ldots, s_{m}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{m}\right)\right\} \uplus S \Longrightarrow$	$\left\{s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{m} \stackrel{?}{=} t_{m}\right\} \cup S$
[conflict]	$\begin{aligned} & \left\{f\left(s_{1}, \ldots, s_{m}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right)\right\} \uplus S \Longrightarrow \\ & \text { where } f \neq g \end{aligned}$	FAIL
[orient]	$\{t \stackrel{?}{=} x\} \uplus S$	$\{x \stackrel{?}{=} t\} \cup S$
	where $t \notin X$	
[eliminate]	$\{x \stackrel{?}{=} t\} \uplus S$	$\Longrightarrow\{x \stackrel{?}{=} t\} \cup\{x \mapsto t\}(S)$
	where $x \notin \operatorname{Var}(t)$ and $x \in \operatorname{Var}(S)$	
[occurs check] $\{x \stackrel{?}{=} t\} \uplus S$		FAIL
	where $x \in \operatorname{Var}(t)$ and $t \notin X$	

