CS 512, Spring 2017, Handout 28

Analytic Tableaux for Classical First-Order Logic (Part 2)

Assaf Kfoury

April 10, 2017

REVIEW and PRELIMINARIES

- This handout continues Handout 09 and Handout 26, which introduced tableaux for propositional logic and tableaux for first-order logic.
- This handout also depends on Handout 27, which is a presentation of unification, limited to the kind we use in first-order tableaux (and, later, in first-order resolution).

second TABLEAU method: FREE VARIABLES + UNIFICATION

- We avoid some of the problems in the first tableau method (in Handout 26), by modifying the quantifier rules and how we use them - informally:
- delay applications of rule (\forall), the source of the problems, when possible,
- when (\forall) is applied, instantiate with a fresh variable (not a ground term),
- the generated sub-formulas in the tableau T are thus no longer closed,
- the new fresh variables in T are implicitly universally quantified outside T.

[^0]
second TABLEAU method: FREE VARIABLES + UNIFICATION

- We avoid some of the problems in the first tableau method (in Handout 26), by modifying the quantifier rules and how we use them - informally:
- delay applications of rule (\forall), the source of the problems, when possible,
- when (\forall) is applied, instantiate with a fresh variable (not a ground term),
- the generated sub-formulas in the tableau T are thus no longer closed,
- the new fresh variables in T are implicitly universally quantified outside T.
- Modified quantifier rules for second tableau method:
- rule (\forall) for WFF's that start with a universal quantifier:

$$
(\forall) \frac{\forall x \varphi(x)}{\varphi[x:=y]}
$$

where y is a new fresh variable,

- rule (\exists) for WFF's that start with an existential quantifier:

$$
\text { (ヨ) } \frac{\exists x \varphi(x)}{\varphi\left[x:=f\left(y_{1}, \ldots, y_{n}\right)\right]}
$$

where f is a new Skolem function and $\left\{y_{1}, \ldots, y_{n}\right\}=\operatorname{FV}(\exists x \varphi) .{ }^{1}$

[^1]
second TABLEAU method: FREE VARIAbLES + UNIFICATION

- What to do with the free variables that rule (\forall) insert in a tableau?

We need to introduce an additional rule, called the substitution rule, which, every time it is applied, is relative to what is called a unifier.

second TABLEAU method: FREE VARIABLES + UNIFICATION

- What to do with the free variables that rule (\forall) insert in a tableau?

We need to introduce an additional rule, called the substitution rule, which, every time it is applied, is relative to what is called a unifier.

- If σ is a unifier, then we will write " (σ) " to denote the substitution rule relative to σ, spelled out as follows:
(σ) If σ is the most general unifier (MGU) of two literals A and B, where A and $\neg B$ are on the same path of tableau T, then σ is applied simultaneously to all the WFF's in T.
where a literal is an atomic WFF.

second TABLEAU method: FREE VARIABLES + UNIFICATION

- For a precise formulation of (σ) :
- If T is a tableau, and π is a path from the root of T to a leaf node in T, then

$$
T \oplus_{\pi} \varphi
$$

is a new tableau obtained from T by appending φ below the path π.

- WFF's (π) is the set of WFF's occurring along a path π in a tableau.
- $\operatorname{MGU}(A, B)$ is the most general unifier of two literals (atomic formulas).
- paths (T) is the set of paths in the tableau T.

second TABLEAU method: FREE VARIABLES + UNIFICATION

- For a precise formulation of (σ) :
- If T is a tableau, and π is a path from the root of T to a leaf node in T, then

$$
T \oplus_{\pi} \varphi
$$

is a new tableau obtained from T by appending φ below the path π.

- WFF's (π) is the set of WFF's occurring along a path π in a tableau.
- $\operatorname{MGU}(A, B)$ is the most general unifier of two literals (atomic formulas).
- paths (T) is the set of paths in the tableau T.
- Rule (σ) for tableaux with free variables:

$$
(\sigma) \frac{T}{\sigma(T) \oplus_{\pi} X} \quad \pi \in \operatorname{paths}(T),\{A, \neg B\} \subseteq W F F \prime s(\pi), \sigma=\operatorname{MGU}(A, B)
$$

Note that the unifier σ is applied to the entire tableau T.

second TABLEAU method: FREE VARIABLES + UNIFICATION

- For a precise formulation of (σ) :
- If T is a tableau, and π is a path from the root of T to a leaf node in T, then

$$
T \oplus_{\pi} \varphi
$$

is a new tableau obtained from T by appending φ below the path π.

- WFF's (π) is the set of WFF's occurring along a path π in a tableau.
- $\operatorname{MGU}(A, B)$ is the most general unifier of two literals (atomic formulas).
- paths (T) is the set of paths in the tableau T.
- Rule (σ) for tableaux with free variables:

$$
(\sigma) \frac{T}{\sigma(T) \oplus_{\pi} X} \quad \pi \in \operatorname{paths}(T),\{A, \neg B\} \subseteq W F F ' s(\pi), \sigma=\operatorname{MGU}(A, B)
$$

Note that the unifier σ is applied to the entire tableau T.
Schematically in the example on the next slide:

second TABLEAU method: example

$$
\Gamma \triangleq\{\exists x P(x), \forall x(\neg P(x) \vee Q(x)), \forall x(\neg Q(x) \vee R(x)), \forall x(\neg P(x) \vee \neg R(x))\}
$$

where $\sigma_{1} \triangleq\left\{v_{1} \mapsto c\right\}, \sigma_{2} \triangleq\left\{v_{2} \mapsto c\right\}, \sigma_{3} \triangleq\left\{v_{3} \mapsto c\right\}, \sigma_{4} \triangleq\{ \}$ (identity substitution)

second TABLEAU method: FREE VARIABLES + UNIFICATION

Soundness and completeness of the free-variable tableau method also hold:

- Soundness of rules $\{(\forall),(\exists),(\sigma)\}$ (together with the rules for propositional tableaux): If we can generate a closed tableau from an initial set Γ of sentences (in prenex normal form), then Γ is unsatisfiable.
- Completeness of rules $\{(\forall),(\exists),(\sigma)\}$ (together with the rules for propositional tableaux): If a set Γ of sentences (in prenex normal form) is unsatisfiable, there exists a closed tableau generated from Γ by these rules.

ground TABLEAUX versus free-variable TABLEAUX

- We compare the two methods on a simple example:

$$
\Gamma \triangleq\{\forall x \forall y(P(x, y) \rightarrow P(y, x)), P(a, b), P(b, c), \neg P(c, b)\}
$$

- By easy inspection, Γ is not satisfiable - which will be here confirmed by tableaux.

[^2]
ground TABLEAUX versus free-variable TABLEAUX

- We compare the two methods on a simple example:

$$
\Gamma \triangleq\{\forall x \forall y(P(x, y) \rightarrow P(y, x)), P(a, b), P(b, c), \neg P(c, b)\}
$$

- By easy inspection, Γ is not satisfiable - which will be here confirmed by tableaux.

Preliminary remarks for a first comparison:

- We first compare the two methods with no look-ahead of any kind and no heuristics of any kind (e.g., apply "unary" rules before "binary" rules). The resulting tableaux are not optimal. ${ }^{2}$
- For this example, the set of ground terms is finite: $\{a, b, c\}$.
- For brevity, we merge two consecutive applications of rule (\forall) into a single step , when applied to the sentence $\forall x \forall y(P(x, y) \rightarrow P(y, x))$. Moreover, for brevity again, we merge into that single step the application of rule (\rightarrow) which immediately follows it.
- We assume a fixed order in which pairs of ground terms are generated, namely: $(a, a),(a, b),(a, c), \quad(b, a),(b, b),(b, c), \quad(c, a),(c, b),(c, c)$, which is the order in which the variable pair (x, y) is instantiated to ground terms.

[^3]
ground TABLEAUX versus free-variable TABLEAUX

- On slide 15 is a ground tableau (first method) for Γ (which is just too large to fit in a single slide . . .).
- On slide 16 is a free-variable tableau (second method) for Γ.
- Both tableaux are organized similarly, but not optimally:
- Every node is labelled with a boxed pair of integers $i: j$ with $i>j \geqslant 0$:
i is the unique ID number of the node in the tableau,
j is the ID number of the node on which node i depends.
- Label $i: 0$ means the WFF at node i is from Γ.
- Node ID's are linearly ordered in the order in which the tableau is developed:
in depth-first + leftmost mode,
using WFF's in Γ in their given order from left to right , ${ }^{3}$
except when a conflict between atomic WFF's is detected.

[^4]
ground TABLEAUX versus free-variable TABLEAUX

a ground tableau for $\Gamma \triangleq\{\forall x \forall y(P(x, y) \rightarrow P(y, x)), P(a, b), P(b, c), \neg P(c, b)\}$

ground TABLEAUX versus free-variable TABLEAUX

a free-variable tableau for $\Gamma \triangleq\{\forall x \forall y(P(x, y) \rightarrow P(y, x)), P(a, b), P(b, c), \neg P(c, b)\}$

$$
\text { where } \begin{aligned}
& \sigma_{1} \triangleq\left\{v_{1} \mapsto a, v_{2} \mapsto b\right\} \\
& \sigma_{2} \triangleq\left\{v_{3} \mapsto b, v_{4} \mapsto c\right\} \\
& \sigma_{3} \triangleq\{ \} \quad \text { (identity substitution) }
\end{aligned}
$$

ground TABLEAUX versus free-variable TABLEAUX

Preliminary remarks for a second comparison:

- We use the same notation and conventions as those in the first comparison.
- We use the same ordering of the WFF's in Γ, and the same ordering of pairs of ground terms, as those in the first comparison.
- Where the second comparison is different from the first comparison:
- We use the heuristic unary expansion rules before binary expansion rules
- We instantiate the variable pair (x, y) only to ground terms directly leading to a conflict. Specifically, (x, y) is instantiated to the first pair in $\{(a, a),(a, b), \ldots,(c, c)\}$ that makes one (or both) of the branches of the expansion of $\forall x \forall y(P(x, y) \rightarrow P(y, x))$ contradicts an earlier WFF on the same path from the root.

ground TABLEAUX versus free-variable TABLEAUX

Preliminary remarks for a second comparison:

- We use the same notation and conventions as those in the first comparison.
- We use the same ordering of the WFF's in Γ, and the same ordering of pairs of ground terms, as those in the first comparison.
- Where the second comparison is different from the first comparison:
- We use the heuristic unary expansion rules before binary expansion rules
- We instantiate the variable pair (x, y) only to ground terms directly leading to a conflict. Specifically, (x, y) is instantiated to the first pair in $\{(a, a),(a, b), \ldots,(c, c)\}$ that makes one (or both) of the branches of the expansion of $\forall x \forall y(P(x, y) \rightarrow P(y, x))$ contradicts an earlier WFF on the same path from the root.
- With these added heuristics, the two methods appear equally efficient - at least for Γ in this example.
- On slide 19 is a ground tableau (first method) for Γ (now small enough to fit in a single slide).
- On slide 20 is a free-variable tableau (second method) for Γ.
- Can we do better? One more free-variable tableau (second method) for Γ is on slide 21, which is better (shorter) than all the preceding tableaux.

ground TABLEAUX versus free-variable TABLEAUX

another ground tableau for $\Gamma \triangleq\{\forall x \forall y(P(x, y) \rightarrow P(y, x)), P(a, b), P(b, c), \neg P(c, b)\}$

ground TABLEAUX versus free-variable TABLEAUX

another free-variable tableau for $\Gamma \triangleq\{\forall x \forall y(P(x, y) \rightarrow P(y, x)), P(a, b), P(b, c), \neg P(c, b)\}$

where $\sigma_{1} \triangleq\left\{v_{1} \mapsto a, v_{2} \mapsto b\right\}$
$\sigma_{2} \triangleq\left\{v_{3} \mapsto b, v_{4} \mapsto c\right\}$
$\sigma_{2} \triangleq\{ \} \quad$ (identity substitution)

ground TABLEAUX versus free-variable TABLEAUX

one more free-variable tableau for $\Gamma \triangleq\{\forall x \forall y(P(x, y) \rightarrow P(y, x)), P(a, b), P(b, c), \neg P(c, b)\}$

$$
\begin{aligned}
\text { where } & \sigma_{1} \triangleq\left\{v_{1} \mapsto b, v_{2} \mapsto c\right\} \\
& \sigma_{2} \triangleq\{ \} \quad \text { (identity substitution) }
\end{aligned}
$$

second TABLEAU method: exercises

1. Exercise. Redo Exercise 1 on the last slide of Handout 26, now using free-variable tableaux. Spell out a strategy that will minimize the size of the tableau you produce.
2. Exercise. Redo Exercise 2 on the last slide of Handout 26, now using free-variable tableaux. Spell out a strategy that will minimize the size of the tableau you produce.

[^0]: ${ }^{1}$ Note the (subtle) error in the rule (\exists) in the Wikipedia article, under "First-order tableau with unification" - click

[^1]: ${ }^{1}$ Note the (subtle) error in the rule (\exists) in the Wikipedia article, under "First-order tableau with unification" - click here

[^2]: ${ }^{2}$ There are different ways of defining the optimality of a tableau. For simplicity here, we identify optimality with least number of applications of the expansion rules.

[^3]: ${ }^{2}$ There are different ways of defining the optimality of a tableau. For simplicity here, we identify optimality with least number of applications of the expansion rules.

[^4]: ${ }^{3}$ So that, in particular, $\forall x \forall y(P(x, y) \rightarrow P(y, x))$ is considered first and ahead of $P(a, b), P(b, c)$, and $\neg P(c, b)$.

