CS 512, Spring 2017, Handout 29 First-Order Resolution

Assaf Kfoury

April 13, 2017

Assaf Kfoury, CS 512, Spring 2017, Handout 29

REVIEW and PRELIMINARIES

- This handout continues Handout 11, which introduced resolution for propositional logic.
- This handout also depends on Handout 27, which is a presentation of unification, limited to the kind we use in first-order resolution.

REVIEW and PRELIMINARIES

- First-order resolution starts from a Skolemized sentence whose matrix is in CNF.
- So, let φ be such a Skolemized first-order sentence:

 $\varphi \triangleq \forall x_1 \cdots \forall x_k (C_1 \wedge C_2 \wedge \cdots \wedge C_n)$

where each C_i is a disjunction of literals (atomic and negated atomic WFF's).

- Standard practice is to write each **disjunct** (or **clause**) C_i as a set of literals, *i.e.*, if $C_i \triangleq (L_1 \lor L_2 \lor \cdots \lor L_p)$, we may write instead $C'_i \triangleq \{L_1, L_2, \dots, L_p\}$.
- ▶ The **clausal form** of φ is the set of clauses $\{C'_1, C'_2, \ldots, C'_n\}$ where C'_i is the set representation of C_i .

The clausal form of φ is therefore a set of sets of literals.¹

¹As written, each C'_i may be a multiset, not a set, because some literals in C_i may be duplicates. One simplifying advantage of the set representation is to disallow duplicated literals as well as duplicated clauses. C'_i and $\{C'_1, C'_2, \ldots, C'_n\}$ have to be adjusted accordingly (left to you).

REVIEW and PRELIMINARIES

- We can assume that each of the clauses in {C₁, C₂,..., C_n}, or in its set representation {C'₁, C'₂,..., C'_n}, is universally quantified over all its variables because "∀" distributes over "∧".
- ▶ Because each clause is implicitly universally closed, we can assume that for all distinct clauses C_i and C_j , it holds that $FV(C_i) \cap FV(C_j) = \emptyset$ (why?).

This is useful when we unify one literal C_i and one literal in C_j .

FIRST-ORDER RESOLUTION

- We need two rules for carrying out first-order resolution, both using unification: one for resolution proper and one for what is called factoring.
- ▶ The *resolution rule* has two clauses, *D*₁ and *D*₂, as *antecedents* with:
 - ▶ $P(\vec{s}) \triangleq P(s_1, ..., s_k) \in D_1$ and $\neg P(\vec{t}) \triangleq \neg P(t_1, ..., t_k) \in D_2$, *i.e.*, clauses D_1 and D_2 contain conflicting literals $P(\vec{s})$ and $\neg P(\vec{t})$, modulo a unification of \vec{s} and \vec{t} , where P is a *k*-ary predicate symbol,
 - we may assume $FV(\vec{s}) \cap FV(\vec{t}) = \emptyset$ for a simpler unification,
 - a most general unifier of $P(\vec{s})$ and $P(\vec{t})$ exists, $\sigma \triangleq MGU(P(\vec{s}), P(\vec{t}))$,

and one conclusion (or *resolvent* clause) D:

$$\blacktriangleright D \triangleq \left(\sigma \left(D_1 \right) - \left\{ \sigma \left(P(\vec{s}) \right) \right\} \right) \cup \left(\sigma \left(D_2 \right) - \left\{ \sigma \left(\neg P(\vec{t}) \right) \right\} \right)$$

More succintly, the resolution rule is written:

$$\begin{array}{c|c} D_1 & D_2 \\ \hline \left(\sigma\left(D_1\right) - \left\{\sigma\left(P(\vec{s})\right)\right\}\right) \cup \left(\sigma\left(D_2\right) - \left\{\sigma\left(\neg P(\vec{t})\right)\right\}\right) \\ \text{where } P(\vec{s}) \in D_1 \text{ and } \neg P(\vec{t}) \in D_2 \text{ and } \sigma \triangleq \mathsf{MGU}(P(\vec{s}), P(\vec{t})) \end{array}$$

FIRST-ORDER RESOLUTION

The *factoring rule* has one clause, D_1 , as an *antecedent* with:

- P(s) ≜ P(s₁,...,s_k) ∈ D₁ and P(t) ≜ P(t₁,...,t_k) ∈ D₁, *i.e.*, clause D₁ contains two non-conflicting literals P(s) and P(t), modulo a unification of s and t, where P is a k-ary predicate symbol,
- a most general unifier of $P(\vec{s})$ and $P(\vec{t})$ exists, $\sigma \triangleq MGU(P(\vec{s}), P(\vec{t}))$,

and one conclusion (or *resolvent* clause) D:

$$\blacktriangleright D \triangleq \sigma(D_1)$$

With D_1 in set representation, $\sigma(P(\vec{s}))$ and $\sigma(P(\vec{t}))$ are the same literal in $\sigma(D_1)$.

More succintly, the factoring rule is written:²

$$rac{D_1}{\sigma\left(D_1
ight)}$$

where $P(ec{s}) \in D_1$ and $P(ec{t}) \in D_1$ and $\sigma riangleq \mathsf{MGU}ig(P(ec{s}), P(ec{t})ig)$

²There is no need for a factoring rule in *propositional resolution*. Do you see why?

Assaf Kfoury, CS 512, Spring 2017, Handout 29

SOUNDNESS and COMPLETENESS

Theorem

Let $\Psi_0 = \{C_1, C_2, \ldots, C_n\}$ be the clausal form of a Skolemized first-order sentence φ . We then have that:

1. Applying the **resolution rule** and **factoring rule** repeatedly in any order, we obtain a sequence of clausal forms that is bound to terminate:

 $\Psi_0 \quad \Psi_1 \quad \Psi_2 \quad \cdots \quad \Psi_p \qquad \text{for some } p \ge 1$

- 2. If $\bot \in \Psi_p$ then φ is unsatisfiable (soundness).
- 3. If φ is unsatisfiable then $\bot \in \Psi_p$ (completeness).