CS 512, Spring 2017, Handout 29 First-Order Resolution

Assaf Kfoury

April 13, 2017

REVIEW and PRELIMINARIES

- This handout continues Handout 11, which introduced resolution for propositional logic .
- This handout also depends on Handout 27, which is a presentation of unification, limited to the kind we use in first-order resolution.

REVIEW and PRELIMINARIES

- First-order resolution starts from a Skolemized sentence whose matrix is in CNF.
- So, let φ be such a Skolemized first-order sentence:

$$
\varphi \triangleq \forall x_{1} \cdots \forall x_{k}\left(C_{1} \wedge C_{2} \wedge \cdots C_{n}\right)
$$

where each C_{i} is a disjunction of literals (atomic and negated atomic WFF's).

- Standard practice is to write each disjunct (or clause) C_{i} as a set of literals, i.e., if $C_{i} \triangleq\left(L_{1} \vee L_{2} \vee \cdots L_{p}\right)$, we may write instead $C_{i}^{\prime} \triangleq\left\{L_{1}, L_{2}, \ldots, L_{p}\right\}$.
- The clausal form of φ is the set of clauses $\left\{C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}^{\prime}\right\}$ where C_{i}^{\prime} is the set representation of C_{i}.

The clausal form of φ is therefore a set of sets of literals. ${ }^{1}$

[^0]
REVIEW and PRELIMINARIES

- We can assume that each of the clauses in $\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$, or in its set representation $\left\{C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}^{\prime}\right\}$, is universally quantified over all its variables because " \forall " distributes over " \wedge ".
- Because each clause is implicitly universally closed, we can assume that for all distinct clauses C_{i} and C_{j}, it holds that $\mathrm{FV}\left(C_{i}\right) \cap \mathrm{FV}\left(C_{j}\right)=\varnothing$ (why?).

This is useful when we unify one literal C_{i} and one literal in C_{j}.

FIRST-ORDER RESOLUTION

- We need two rules for carrying out first-order resolution, both using unification: one for resolution proper and one for what is called factoring .
- The resolution rule has two clauses, D_{1} and D_{2}, as antecedents with:
- $P(\vec{s}) \triangleq P\left(s_{1}, \ldots, s_{k}\right) \in D_{1} \quad$ and $\neg P(\vec{t}) \triangleq \neg P\left(t_{1}, \ldots, t_{k}\right) \in D_{2}$, i.e., clauses D_{1} and D_{2} contain conflicting literals $P(\vec{s})$ and $\neg P(\vec{t})$, modulo a unification of \vec{s} and \vec{t}, where P is a k-ary predicate symbol,
- we may assume $\mathrm{FV}(\vec{s}) \cap \mathrm{FV}(\vec{t})=\varnothing$ for a simpler unification,
- a most general unifier of $P(\vec{s})$ and $P(\vec{t})$ exists, $\sigma \triangleq \operatorname{MGU}(P(\vec{s}), P(\vec{t}))$, and one conclusion (or resolvent clause) D :

$$
D \triangleq\left(\sigma\left(D_{1}\right)-\{\sigma(P(\vec{s}))\}\right) \cup\left(\sigma\left(D_{2}\right)-\{\sigma(\neg P(\vec{t}))\}\right)
$$

- More succintly, the resolution rule is written:

$$
\begin{aligned}
& \frac{D_{1} \quad D_{2}}{\left(\sigma\left(D_{1}\right)-\{\sigma(P(\vec{s}))\}\right) \cup\left(\sigma\left(D_{2}\right)-\{\sigma(\neg P(\vec{t}))\}\right)} \\
& \text { where } P(\vec{s}) \in D_{1} \text { and } \neg P(\vec{t}) \in D_{2} \text { and } \sigma \triangleq \operatorname{MGU}(P(\vec{s}), P(\vec{t}))
\end{aligned}
$$

FIRST-ORDER RESOLUTION

- The factoring rule has one clause, D_{1}, as an antecedent with:
- $P(\vec{s}) \triangleq P\left(s_{1}, \ldots, s_{k}\right) \in D_{1}$ and $P(\vec{t}) \triangleq P\left(t_{1}, \ldots, t_{k}\right) \in D_{1}$, i.e., clause D_{1} contains two non-conflicting literals $P(\vec{s})$ and $P(\vec{t})$, modulo a unification of \vec{s} and \vec{t}, where P is a k-ary predicate symbol,
- a most general unifier of $P(\vec{s})$ and $P(\vec{t})$ exists, $\sigma \triangleq \operatorname{MGU}(P(\vec{s}), P(\vec{t}))$,
and one conclusion (or resolvent clause) D :
- $D \triangleq \sigma\left(D_{1}\right)$

With D_{1} in set representation, $\sigma(P(\vec{s}))$ and $\sigma(P(\vec{t}))$ are the same literal in $\sigma\left(D_{1}\right)$.

- More succintly, the factoring rule is written: ${ }^{2}$

$$
\begin{aligned}
& \quad \frac{D_{1}}{\sigma\left(D_{1}\right)} \\
& \text { where } P(\vec{s}) \in D_{1} \text { and } P(\vec{t}) \in D_{1} \text { and } \sigma \triangleq \operatorname{MGU}(P(\vec{s}), P(\vec{t}))
\end{aligned}
$$

[^1]
SOUNDNESS and COMPLETENESS

Theorem

Let $\Psi_{0}=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ be the clausal form of a Skolemized first-order sentence φ. We then have that:

1. Applying the resolution rule and factoring rule repeatedly in any order, we obtain a sequence of clausal forms that is bound to terminate:

$$
\Psi_{0} \quad \Psi_{1} \quad \Psi_{2} \quad \cdots \quad \Psi_{p} \quad \text { for some } p \geqslant 1
$$

2. If $\perp \in \Psi_{p}$ then φ is unsatisfiable (soundness).
3. If φ is unsatisfiable then $\perp \in \Psi_{p}$ (completeness).

[^0]: ${ }^{1}$ As written, each C_{i}^{\prime} may be a multiset, not a set, because some literals in C_{i} may be duplicates. One simplifying advantage of the set representation is to disallow duplicated literals as well as duplicated clauses. C_{i}^{\prime} and $\left\{C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{n}^{\prime}\right\}$ have to be adjusted accordingly (left to you).

[^1]: ${ }^{2}$ There is no need for a factoring rule in propositional resolution. Do you see why?

