
CS 512, Spring 2017, Handout 30

Limits of Formal Modeling in
Propositional Logic and First-Order Logic

Assaf Kfoury

April 18, 2017

Assaf Kfoury, CS 512, Spring 2017, Handout 30 page 1 of 14

TWO KINDS OF LIMITS

I Complexity limits :

I Many properties we want to verify can be formally expressed in propositional
logic and/or first-order logic and/or in some fragments thereof.

I In most real-world cases, however, they cannot be analyzed or verified by
hand and we need to rely on automated or semi-automated tools.

I But before we do this, we need to know their complexity which, in some
cases, may be beyond the most powerful tools currently available.

I Our formalization of a property may turn out to be such that its verification is
feasible (e.g., linear or low-degree polynomial time) or unfeasible (e.g.,
exponential or double-exponential time or worse) – or even undecidable.

I Expressiveness limits :

I What is the “weakest” or “least expressive” logic (e.g., propositional logic, or
a fragment of it, in preference to first-order logic) in which we can formally
express a given property?

I What are (realistic) examples of properties that are not expressible in
first-order logic, let alone propositional logic?

I Are there tradeoffs between expressiveness and complexity? A “strong” or
“more expressive” logic generally gives rise to formalizations of properties
that are more difficult to verify, but not always.

Assaf Kfoury, CS 512, Spring 2017, Handout 30 page 2 of 14

TWO KINDS OF LIMITS

I Complexity limits :
I Many properties we want to verify can be formally expressed in propositional

logic and/or first-order logic and/or in some fragments thereof.
I In most real-world cases, however, they cannot be analyzed or verified by

hand and we need to rely on automated or semi-automated tools.
I But before we do this, we need to know their complexity which, in some

cases, may be beyond the most powerful tools currently available.
I Our formalization of a property may turn out to be such that its verification is

feasible (e.g., linear or low-degree polynomial time) or unfeasible (e.g.,
exponential or double-exponential time or worse) – or even undecidable.

I Expressiveness limits :

I What is the “weakest” or “least expressive” logic (e.g., propositional logic, or
a fragment of it, in preference to first-order logic) in which we can formally
express a given property?

I What are (realistic) examples of properties that are not expressible in
first-order logic, let alone propositional logic?

I Are there tradeoffs between expressiveness and complexity? A “strong” or
“more expressive” logic generally gives rise to formalizations of properties
that are more difficult to verify, but not always.

Assaf Kfoury, CS 512, Spring 2017, Handout 30 page 3 of 14

TWO KINDS OF LIMITS

I Complexity limits :
I Many properties we want to verify can be formally expressed in propositional

logic and/or first-order logic and/or in some fragments thereof.
I In most real-world cases, however, they cannot be analyzed or verified by

hand and we need to rely on automated or semi-automated tools.
I But before we do this, we need to know their complexity which, in some

cases, may be beyond the most powerful tools currently available.
I Our formalization of a property may turn out to be such that its verification is

feasible (e.g., linear or low-degree polynomial time) or unfeasible (e.g.,
exponential or double-exponential time or worse) – or even undecidable.

I Expressiveness limits :
I What is the “weakest” or “least expressive” logic (e.g., propositional logic, or

a fragment of it, in preference to first-order logic) in which we can formally
express a given property?

I What are (realistic) examples of properties that are not expressible in
first-order logic, let alone propositional logic?

I Are there tradeoffs between expressiveness and complexity? A “strong” or
“more expressive” logic generally gives rise to formalizations of properties
that are more difficult to verify, but not always.

Assaf Kfoury, CS 512, Spring 2017, Handout 30 page 4 of 14

PIGEON-HOLE PRINCIPLE (PHP) once more
I We already studied PHP in propositional logic – in the handout Formal Modeling

with Propositional Logic (click here).1 We defined propositional WFF’s:

ϕ2, ϕ3, . . . , ϕn, . . . ,

where ϕn expresses PHPn, i.e., PHP for the case of n pigeons.

I We now want a first-order sentence Ψ in the signature Σ = {R, c} where R is a
binary relation symbol and c is a constant symbol, such that:

Every structureMn of the form ({1, 2, . . . , n},RMn , cMn) is a model of Ψ and
the interpretation of Ψ inMn expresses PHPn.

I Here is a possible first-order formulation of ψ:

Ψ ,
(
∀x ∃y R(x, y)

)
∧
(
∀x¬R(x, c)

)
→ ∃v ∃w∃y

(
¬(v .

= w) ∧ R(v, y) ∧ R(w, y)
)

Note: If
(
∀x¬R(x, c)

)
is omitted to obtain a new sentence Ψ′, there is a structure

Mn satisfying
(
∀x ∃y R(x, y)

)
but not ∃v∃w ∃y

(
¬(v .

= w) ∧ R(v, y) ∧ R(w, y)
)
,

in which caseMn 6|= Ψ′ and PHPn is not enforced inMn.

I Advantage of a first-order formulation over a propositional formulation :

one first-order WFF Ψ instead of infinitely many propositional WFF’s {ϕ2, ϕ3, . . .}

1
Reminder of what the PHP says: “If n pigeons sit in (n− 1) holes, then some hole contains more than one pigeon” .

Assaf Kfoury, CS 512, Spring 2017, Handout 30 page 5 of 14

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents_Past_Semesters/modeling-with-PL.pdf

PIGEON-HOLE PRINCIPLE (PHP) once more
I We already studied PHP in propositional logic – in the handout Formal Modeling

with Propositional Logic (click here).1 We defined propositional WFF’s:

ϕ2, ϕ3, . . . , ϕn, . . . ,

where ϕn expresses PHPn, i.e., PHP for the case of n pigeons.

I We now want a first-order sentence Ψ in the signature Σ = {R, c} where R is a
binary relation symbol and c is a constant symbol, such that:

Every structureMn of the form ({1, 2, . . . , n},RMn , cMn) is a model of Ψ and
the interpretation of Ψ inMn expresses PHPn.

I Here is a possible first-order formulation of ψ:

Ψ ,
(
∀x ∃y R(x, y)

)
∧
(
∀x¬R(x, c)

)
→ ∃v ∃w∃y

(
¬(v .

= w) ∧ R(v, y) ∧ R(w, y)
)

Note: If
(
∀x¬R(x, c)

)
is omitted to obtain a new sentence Ψ′, there is a structure

Mn satisfying
(
∀x ∃y R(x, y)

)
but not ∃v∃w ∃y

(
¬(v .

= w) ∧ R(v, y) ∧ R(w, y)
)
,

in which caseMn 6|= Ψ′ and PHPn is not enforced inMn.

I Advantage of a first-order formulation over a propositional formulation :

one first-order WFF Ψ instead of infinitely many propositional WFF’s {ϕ2, ϕ3, . . .}

1
Reminder of what the PHP says: “If n pigeons sit in (n− 1) holes, then some hole contains more than one pigeon” .

Assaf Kfoury, CS 512, Spring 2017, Handout 30 page 6 of 14

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents_Past_Semesters/modeling-with-PL.pdf

PIGEON-HOLE PRINCIPLE (PHP) once more
I We already studied PHP in propositional logic – in the handout Formal Modeling

with Propositional Logic (click here).1 We defined propositional WFF’s:

ϕ2, ϕ3, . . . , ϕn, . . . ,

where ϕn expresses PHPn, i.e., PHP for the case of n pigeons.

I We now want a first-order sentence Ψ in the signature Σ = {R, c} where R is a
binary relation symbol and c is a constant symbol, such that:

Every structureMn of the form ({1, 2, . . . , n},RMn , cMn) is a model of Ψ and
the interpretation of Ψ inMn expresses PHPn.

I Here is a possible first-order formulation of ψ:

Ψ ,
(
∀x ∃y R(x, y)

)
∧
(
∀x¬R(x, c)

)
→ ∃v∃w∃y

(
¬(v .

= w) ∧ R(v, y) ∧ R(w, y)
)

Note: If
(
∀x¬R(x, c)

)
is omitted to obtain a new sentence Ψ′, there is a structure

Mn satisfying
(
∀x ∃y R(x, y)

)
but not ∃v∃w ∃y

(
¬(v .

= w) ∧ R(v, y) ∧ R(w, y)
)
,

in which caseMn 6|= Ψ′ and PHPn is not enforced inMn.

I Advantage of a first-order formulation over a propositional formulation :

one first-order WFF Ψ instead of infinitely many propositional WFF’s {ϕ2, ϕ3, . . .}
1

Reminder of what the PHP says: “If n pigeons sit in (n− 1) holes, then some hole contains more than one pigeon” .

Assaf Kfoury, CS 512, Spring 2017, Handout 30 page 7 of 14

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents_Past_Semesters/modeling-with-PL.pdf

PIGEON-HOLE PRINCIPLE (PHP) once more
I Exercise:

1. Translate Ψ into a propositional WFF ψn which depends on an additional
parameter n > 2. (Ψ represents an infinite family of propositional WFF’s,
one ψn for every n > 2.)
Hint: Consider replacing every “∀” by a “

∧
” and every “∃” by a “

∨
”.

2. Compare ϕn and ψn.
Hint: They are very close to each other.

I Exercise:

1. Use an automated proof-assistant (e.g., Isabelle, Coq, etc.)
to establish that Ψ is valid.

2. Use a SAT solver to establish that each of ϕ2, ϕ3, and ϕ4 is valid.
3. Compare the performances in part 1 and part 2.

I Fact: A resolution proof of ϕn or ψn is possible but does not help (bad news!).
More precisely, any resolution proof of ϕn or ψn has size at least Ω(2n) .

I Fact: There are proofs of ϕn and ψn using what is called extended resolution
(not covered this semester) which have size O(n4).

I Fact: There are Hilbert-style proofs (not covered this semester)

of ϕn and ψn which have size at most O(n20) (not really good news!).

Assaf Kfoury, CS 512, Spring 2017, Handout 30 page 8 of 14

PIGEON-HOLE PRINCIPLE (PHP) once more
I Exercise:

1. Translate Ψ into a propositional WFF ψn which depends on an additional
parameter n > 2. (Ψ represents an infinite family of propositional WFF’s,
one ψn for every n > 2.)
Hint: Consider replacing every “∀” by a “

∧
” and every “∃” by a “

∨
”.

2. Compare ϕn and ψn.
Hint: They are very close to each other.

I Exercise:

1. Use an automated proof-assistant (e.g., Isabelle, Coq, etc.)
to establish that Ψ is valid.

2. Use a SAT solver to establish that each of ϕ2, ϕ3, and ϕ4 is valid.
3. Compare the performances in part 1 and part 2.

I Fact: A resolution proof of ϕn or ψn is possible but does not help (bad news!).
More precisely, any resolution proof of ϕn or ψn has size at least Ω(2n) .

I Fact: There are proofs of ϕn and ψn using what is called extended resolution
(not covered this semester) which have size O(n4).

I Fact: There are Hilbert-style proofs (not covered this semester)

of ϕn and ψn which have size at most O(n20) (not really good news!).

Assaf Kfoury, CS 512, Spring 2017, Handout 30 page 9 of 14

how strong is first-order logic?
I Two very similar first-order sentences:

θ1 , ∀x ∃y
(
x < y ∧ prime(y) ∧ prime(y + 2)

)
θ2 , ∀x ∃y

(
¬(x .

= 0) → (x < y) ∧ (y 6 2× x) ∧ prime(y)
)

both to be interpreted in the structureN , (N;×,+, 0, 1) and where prime() is
a unary predicate that tests whether its argument is a prime number. prime() is
first-order definable inN .

I θ1 formally expresses the Twin-Prime Conjecture, a long-standing open problem.

I θ2 formally expresses the Bertrand-Chebyshev Conjecture, which was shown to be
true – by hand, before digital computers were invented!2

I In recent years, formal proofs of θ2 have been produced in several automated
proof assistants (Isabelle, Coq, Metamath, Mizar, and perhaps others of which I
am not aware), though all beyond the scope of this semester.

2
A nice history of the Bertrand-Chebyshev Conjecture and its generalizations, and their increasingly simpler proofs, are

presented in a Wikipedia article (click here).

Assaf Kfoury, CS 512, Spring 2017, Handout 30 page 10 of 14

https://en.wikipedia.org/wiki/Bertrand%27s_postulate

how strong is first-order logic?

Theorem

1. The validity problem of first-order logic3 is semi-decidable but not decidable.

2. The unsatisfiability problem of first-order logic is semi-decidable but not decidable.

Proof.

1. Different ways of proving the semi-decidability of the validity problem. One way:
Gilmore’s algorithm in Handout 25 is a semi-decision procedure (details left to you).

One proof of the undecidability is in [LCS, page 133] which consists in reducing the
(undecidable) PCP to the validity problem of FOL. A more direct proof of the
undecidability reduces the Halting Problem for Turing machines to the validity
problem of FOL (posted on the course website – click here).

2. This follows from part 1 because, for any first-order WFF ϕ,
ϕ is valid iff ¬ϕ is unsatisfiable.

Exercise: Give another proof (not based on Gilmore’s algorithm) for the
semi-decidability of the validity problem of FOL.

3
This is the decision problem that asks whether an arbitrary first-order WFF, or its universal closure as a sentence, is valid.

Assaf Kfoury, CS 512, Spring 2017, Handout 30 page 11 of 14

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents_Past_Semesters/undecidability-of-first-order-logic.html

how strong is first-order logic?

Theorem (Skolem-Lowenheim)

1. If ϕ is a first-order sentence such that, for every n > 1, there is a model of ϕ with
at least n elements, then ϕ has an infinite model.

“First-order logic cannot enforce finiteness of models.”

2. If ϕ is a first-order sentence which has a model (i.e., ϕ is satisfiable), then ϕ has a
model with a countable universe.

“First-order logic cannot enforce uncountable models.”

Proof.

1. A proof is given in [LCS, page 138].

2. A proof is a simple variation on the proof of Lemma 24 in the handout
Compactness and Completeness of Propositional Logic and First-Order Logic –
click here. We omit the details.

Assaf Kfoury, CS 512, Spring 2017, Handout 30 page 12 of 14

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents_Past_Semesters/compactness.pdf

how strong is first-order logic?

Theorem
There is no first-order WFF ψ(x, y) with two free variables x and y, over the signature
{R, .=} where R is a binary predicate symbol, such that for every graph model
M = (M,RM) and every a, b ∈ M, it holds that:

M, a, b |= ψ iff there is a path from a to b

“Reachibility in graphs is not first-order definable.”

Proof.
One possible proof is in [LCS, page 138].

Assaf Kfoury, CS 512, Spring 2017, Handout 30 page 13 of 14

Assaf Kfoury, CS 512, Spring 2017, Handout 30 page 14 of 14

