CS 512, Spring 2017, Handout 31

SMT Solver = SAT Solver + a theory

(continuation of Handout 12: SAT Solvers)

Assaf Kfoury

20 April 2017

PRELIMINARIES

- ► SMT = Satisfiability Modulo a Theory.
- ► Theory = the quantifier-free fragment of a first-order theory.¹
- ► SMT Solver = SAT solver working with a theory solver (or T-solver).

¹See Handout 18 for details on first-order theories.

PRELIMINARIES

- ► SMT = Satisfiability Modulo a Theory.
- ► Theory = the quantifier-free fragment of a first-order theory.¹
- ► SMT Solver = SAT solver working with a theory solver (or T-solver).
- Examples of first-order theories considered in SMT solvers, in each case limited to the quantifier-free fragment:
 - Equality with Uninterpreted Functions (EUF) Handout 18, pp 3-4
 - ► Linear Integer Arithmetic (LIA) Handout 18, p 21
 - Linear Real Arithmetic (LRA) similar to LIA, except that the domain is ℚ (set of rationals) or ℝ (set of reals).
 - ▶ Difference Logic (DL), which is a fragment of LRA
 - other theories:

Arrays , $\,$ Bit-Vectors , $\,$ Tuples and Records , $\,$ Algebraic Datatypes , etc.

¹See Handout 18 for details on first-order theories.

PRELIMINARIES

- ► SMT = Satisfiability Modulo a Theory.
- ► Theory = the quantifier-free fragment of a first-order theory.¹
- ► SMT Solver = SAT solver working with a theory solver (or T-solver).
- Examples of first-order theories considered in SMT solvers, in each case limited to the quantifier-free fragment:
 - ► Equality with Uninterpreted Functions (EUF) Handout 18, pp 3-4
 - Linear Integer Arithmetic (LIA) Handout 18, p 21
 - Linear Real Arithmetic (LRA) similar to LIA, except that the domain is ℚ (set of rationals) or ℝ (set of reals).
 - ▶ Difference Logic (DL), which is a fragment of LRA
 - other theories:
 Arrays , Bit-Vectors , Tuples and Records , Algebraic Datatypes , etc.
- ▶ Reason for the restriction to quantifier-free fragments: Given a theory T, we need an efficient decision procedure to decide validity relative to T, i.e., to "quickly" decide whether $T \vdash \varphi$.

¹See Handout 18 for details on first-order theories.

²CDCL SAT-solver = Conflict-Driven Clause-Learning SAT-solver , a variant of the DPLL procedure.

Eager Methods

Lazy Methods

²CDCL SAT-solver = Conflict-Driven Clause-Learning SAT-solver , a variant of the DPLL procedure.

- Eager Methods
 - Convert SMT problem into an equisatisfiable SAT problem.
 - Example theories for which eager methods work well: Equality, Difference Logic, Bit-Vectors.
- Lazy Methods

²CDCL SAT-solver = Conflict-Driven Clause-Learning SAT-solver, a variant of the DPLL procedure.

Eager Methods

- Convert SMT problem into an equisatisfiable SAT problem.
- Example theories for which eager methods work well: Equality, Difference Logic, Bit-Vectors.

Lazy Methods

- Interleave SAT-solver steps with T-solver steps, but keep the two separate.
- More widely applicable that eager methods.
- Most common approach: CDCL SAT-solver combined with a T-solver.²

²CDCL SAT-solver = Conflict-Driven Clause-Learning SAT-solver, a variant of the DPLL procedure.