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example

I Let ϕ , ∃y [ P(y)→ ∀x P(x) ]

ϕ is a first-order sentence over the vocabulary/signature Σ = {P}.

Is ϕ semantically valid (true in every model) or, equivalently,
formally provable?

I Yes, it is, no matter the interpretation of the predicate symbol P.

So why not consider instead the formula ψ , ∀Pϕ?

ψ is no longer first-order, but a second-order sentence.

I Do we have a formal semantics for second-order logic?

Do we have a formal proof theory / deductive system for
second-order logic?

If the answer is yes to both questions, do we a have
soundness-and-completeness theorem for second-order logic?
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from first-order to second-order logic

Given a vocabulary Σ = P ∪ F ∪ C as before –

P is a collection of predicate symbols,
F a collection of function symbols,
C a collection of constant symbols –

we go from the syntax and formation rules of first-order logic to
second-order logic by adding:

I predicate variables: X1,X2, . . . each with a fixed arity n > 1.
I function variables: F1,F2, . . . each with a fixed arity n > 1.

The definition of a modelM proceeds as in Handout 17, except
that now an environment (or look-up table) ` must assign a
meaning to predicate variables and function variables, in addition
to individual variables.
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from first-order to second-order logic
The only new features in the definition of satisfaction deal with the
second-order quantifiers – see Handout 17:

I let X be a n-ary predicate variable, for some n > 1,

M, ` |= ∀X ϕ iffM, `[X 7→ R] |= ϕ for every R ⊆ A× · · · × A︸ ︷︷ ︸
n

I let F be a n-ary function variable, for some n > 1,

M, ` |= ∀F ϕ iffM, `[F 7→ f ] |= ϕ for every f : A× · · · × A︸ ︷︷ ︸
n

→ A
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semantic entailment, semantic validity, satisfiability
Let ϕ be a second-order WFF . Similar to 1st order logic, we say:

I WFF ϕ is satisfiable iff there are someM and ` such thatM, ` |= ϕ

I WFF ϕ is semantically valid iff for allM and ` it holds thatM, ` |= ϕ

I If ϕ is a closed second-order WFF, we writeM |= ϕ instead ofM, ` |= ϕ

Let Γ be a set of second-order WFF’s :

I Γ is satisfiable iff there are someM and ` s.t.M, ` |= ϕ for every ϕ ∈ Γ

I semantic entailment: Γ |= ψ iff for everyM and every `, it holds that
M, ` |= Γ impliesM, ` |= ψ
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soundness and completeness for second-order logic ???
I There are several deductive systems for second-order logic,

but none can be complete w.r.t. second-order semantics.
(Not shown in this handout.)

I At a minimum, each of these deductive systems is sound, i.e., any
second-order WFF which is formally derivable is semantically valid.
(Not shown in this handout.)
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examples (modeling in second-order logic)
I “A well-ordering is an ordering 6 such that

every non-empty set has a least element w.r.t. 6”

I From Handout 18: Can first-order logic specific a well-ordering?

I Second-order logic can express the well-ordering property:

ϕ , ∀X
(
∃y X(y)→ ∃v

(
X(v) ∧ ∀w (X(w)→ v 6 w)

) )
I Fact (not proved here): The set of sentences

{ϕ} ∪ Th(N1)

defines N1 (and every structure which is an expansion of N1)
up to isomorphism, where N1 , (N, 0, S, <) in Handout 23.

I Fact (not proved here): First-order logic cannot specify the well-ordering
property, because there are non-isomorphic models of Th(N1), some of
which are well-ordered and some are not well-ordered.
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examples (modeling in second-order logic)
I A second-order sentence satisfied by a structure M iff

the domain/universe of M is infinite:1

ψ , ∃P
(
∀x ∀y∀z

(
P(x, y) ∧ P(y, z) → P(x, z)

)
“P is transitive”

∧ ∀x
(
¬P(x, x)

)
“P is not reflexive”

∧ ∀x ∃y P(x, y)
)

“every x is s.t. x P−→ y for some y”

I A second-order sentence satisfied by a model M iff
the domain of M is finite:

¬ψ

1By definition, the universe ofM, is a non-empty set. Hence, ψ cannot be vacuously true,
because all models of ψ have non-empty universes.
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compactness and completeness fail for second-order logic

Compactness Theorem for First-Order
Let Γ be a set of first-order sentences.

1. If every finite subset of Γ is satisfiable, then so is Γ.

2. If every finite subset of Γ is consistent, then so is Γ.

Counter-Example for Second-Order Compactness

For every n > 1, define the first-order sentence θn by:

θn , “there are at least n distinct elements”

Consider the set of sentences:

∆ = {¬ψ} ∪ {θ1, θ2, θ3, ...}

Every finite subset of ∆ is satisfiable, while ∆ is unsatisfiable.
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compactness and completeness fail for second-order logic
I There are deductive systems (i.e., formal proof theories) for second-order

logic, but none can be complete (for the standard semantics).

In contrast to first-order logic:
“There are deductive systems for first-order logic which are complete.”

I There are sets Γ of second-order sentences which, although consistent
(i.e., ⊥ cannot be formally deduced from Γ), do not have models.

In contrast to first-order logic:
“Every consistent set of first-order sentences has a model.”
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