CS 512, Spring 2017, Handout 32
Second Order Logic

Assaf Kfoury

25 April 2017

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 1 of 19

example

> Let p = 3y [P(y) — VxP(x)]
¢ is a first-order sentence over the vocabulary/signature ¥ = {P}.

Is ¢ semantically valid (true in every model) or, equivalently,
formally provable?

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 2 of 19

example

> Let p = 3y [P(y) — VxP(x)]
¢ is a first-order sentence over the vocabulary/signature ¥ = {P}.

Is ¢ semantically valid (true in every model) or, equivalently,
formally provable?

> Yes, itis, no matter the interpretation of the predicate symbol P.

So why not consider instead the formula) = VP ¢?

1 is no longer first-order, but a second-order sentence.

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 3 of 19

example

> Let p = 3y [P(y) — VxP(x)]
¢ is a first-order sentence over the vocabulary/signature ¥ = {P}.

Is ¢ semantically valid (true in every model) or, equivalently,
formally provable?

> Yes, itis, no matter the interpretation of the predicate symbol P.

So why not consider instead the formula) = VP ¢?
1 is no longer first-order, but a second-order sentence.
» Do we have a formal semantics for second-order logic?

Do we have a formal proof theory / deductive system for
second-order logic?

If the answer is yes to both questions, do we a have
soundness-and-completeness theorem for second-order logic?

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 4 of 19

from first-order to second-order logic

Given a vocabulary ¥ = P U F UC as before —

‘P is a collection of predicate symbols,
JF a collection of function symbols,
C a collection of constant symbols —

we go from the syntax and formation rules of first-order logic to
second-order logic by adding:

» predicate variables: X, X, ... each with a fixed arity n > 1.
» function variables: F'|, F,, ... each with a fixed arity n > 1.

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 5 of 19

from first-order to second-order logic

Given a vocabulary ¥ = P U F UC as before —

‘P is a collection of predicate symbols,
JF a collection of function symbols,
C a collection of constant symbols —

we go from the syntax and formation rules of first-order logic to
second-order logic by adding:

» predicate variables: X, X, ... each with a fixed arity n > 1.
» function variables: F'|, F,, ... each with a fixed arity n > 1.

The definition of a model M proceeds as in Handout 17, except
that now an environment (or look-up table) ¢/ must assign a
meaning to predicate variables and function variables, in addition
to individual variables.

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 6 of 19

from first-order to second-order logic

The only new features in the definition of satisfaction deal with the
second-order quantifiers — see Handout 17:

> let X be a n-ary predicate variable, for some n > 1,

M, L =VX iff M, {[X — R f RCAXx---xA
EVXe i [| = ¢ for every X +ee X

> let F be a n-ary function variable, for somen > 1,

M, L=YFy iff M, (F f CAX XA A
EVFe i [F—flEg@foreveryf:Ax - xA—

n

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 7 of 19

semantic entailment, semantic validity, satisfiability

Let ¢ be a second-order WFF . Similar to 1st order logic, we say:

> WFF ¢ is satisfiable iff there are some M and ¢ such that M, £ = ¢
» WFF ¢ is semantically valid iff for all M and ¢ it holds that M, ¢ = ¢
> If v is a closed second-order WFF, we write M |= ¢ instead of M, ¢ = ¢

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 8 of 19

semantic entailment, semantic validity, satisfiability
Let ¢ be a second-order WFF . Similar to 1st order logic, we say:
> WFF ¢ is satisfiable iff there are some M and ¢ such that M, £ = ¢

» WFF ¢ is semantically valid iff for all M and ¢ it holds that M, ¢ = ¢
> If v is a closed second-order WFF, we write M |= ¢ instead of M, ¢ = ¢

LetI'" be a set of second-order WFF'’s :
» T is satisfiable iff there are some M and ¢ s.t. M, ¢ = pforevery p € T

» semantic entailment: " =« iff for every M and every ¢, it holds that
M, ¢ =T implies M, ¢ =

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 9 of 19

soundness and completeness for second-order logic 7?7?77

> There are several deductive systems for second-order logic,
but none can be complete w.r.t. second-order semantics.
(Not shown in this handout.)

» At a minimum, each of these deductive systems is sound, i.e., any
second-order WFF which is formally derivable is semantically valid.
(Not shown in this handout.)

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 10 of 19

examples (modeling in second-order logic)

> “A well-ordering is an ordering < such that
every non-empty set has a least element w.r.t. <”

» From Handout 18: Can first-order logic specific a well-ordering?

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 11 of 19

examples (modeling in second-order logic)

> “A well-ordering is an ordering < such that
every non-empty set has a least element w.r.t. <”

» From Handout 18: Can first-order logic specific a well-ordering?

» Second-order logic can express the well-ordering property:

p 2 VX (EyX(y) — v (X(v) AVw (X(w) = v < w)))

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 12 of 19

examples (modeling in second-order logic)

> “A well-ordering is an ordering < such that
every non-empty set has a least element w.r.t. <”

» From Handout 18: Can first-order logic specific a well-ordering?

» Second-order logic can express the well-ordering property:
o= VX (EyX(y) = I (X(v) AVW (X(w) = v < w)))

» Fact (not proved here): The set of sentences
{} UTh(M)

defines AV (and every structure which is an expansion of AVp)
up to isomorphism, where NV} £ (N, 0, S, <) in Handout 23.

> Fact (not proved here): First-order logic cannot specify the well-ordering
property, because there are non-isomorphic models of Th(\;), some of
which are well-ordered and some are not well-ordered.

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 13 of 19

examples (modeling in second-order logic)
> A second-order sentence satisfied by a structure M iff
the domain/universe of M is infinite:'
&3P (VxVy Vz (P(x,y) A P(y,z) = P(x,z)) “Pistransitive’
A Vx (=P(x,x)) “P is not reflexive”

A Vx3yP(x,y)) “every x is s.t. x —» y for some y”

1By definition, the universe of M, is a non-empty set. Hence, 1 cannot be vacuously true,
because all models of ¢ have non-empty universes.

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 14 of 19

examples (modeling in second-order logic)
> A second-order sentence satisfied by a structure M iff
the domain/universe of M is infinite:'
&3P (VxVy Vz (P(x,y) A P(y,z) = P(x,z)) “Pistransitive’
A Vx (=P(x,x)) “P is not reflexive”

A Vx3yP(x,y)) “every x is s.t. x —» y for some y”

> A second-order sentence satisfied by a model M iff
the domain of M is finite:

Y

1By definition, the universe of M, is a non-empty set. Hence, 1 cannot be vacuously true,
because all models of ¢ have non-empty universes.

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 15 of 19

compactness and completeness fail for second-order logic

Compactness Theorem for First-Order
Let I' be a set of first-order sentences.

1. If every finite subset of I is satisfiable, then sois T'.

2. If every finite subset of I is consistent, then sois I'.

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 16 of 19

compactness and completeness fail for second-order logic

Compactness Theorem for First-Order
Let I' be a set of first-order sentences.

1. If every finite subset of I is satisfiable, then sois T'.

2. If every finite subset of I is consistent, then sois I'.

Counter-Example for Second-Order Compactness
For every n > 1, define the first-order sentence 6, by:

6, £ “there are at least n distinct elements”
Consider the set of sentences:

A= {0} U{0;,0,,05,..}

Every finite subset of A is satisfiable, while A is unsatisfiable.

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 17 of 19

compactness and completeness fail for second-order logic

> There are deductive systems (i.e., formal proof theories) for second-order
logic, but none can be complete (for the standard semantics).

In contrast to first-order logic:
“There are deductive systems for first-order logic which are complete.”

> There are sets I' of second-order sentences which, although consistent
(i.e., L cannot be formally deduced from I'), do not have models.

In contrast to first-order logic:
“Every consistent set of first-order sentences has a model.”

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 18 of 19

Assaf Kfoury, CS 512, Spring 2017, Handout 32 page 19 of 19

