
CS 512, Spring 2017, Handout 33

Second Order Logic
(with several examples in formal modeling)

Assaf Kfoury

26 April 2017

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 1 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I “A Hamiltonian path is a path that visits every node exactly once”

ϕ , ∃P
(

“P is a linear order” ∧ ∀x∀y (“y = x + 1” → R(x, y))
)

ϕ , ∃P
(
ψ1(P) ∧ ∀x∀y (ψ2(P, x, y) → R(x, y))

)
ψ1(P) makes predicate-variable P a linear order:

ψ1(P) , ∀x P(x, x) ∧ reflexivity

∀x∀y∀z
(
P(x, y) ∧ P(y, z) → P(x, z)

)
∧ transitivity

∀x∀y
(
P(x, y) ∧ P(y, x) → x .

= y
)
∧ anti-symmetry

∀x∀y
(
P(x, y) ∨ P(y, x)

)
totality

ψ2(P, x, y) is a WFF with free predicate-variable P of arity 2 and first-order
variables x and y, which makes y the successor of x in the linear order P:

ψ2(P, x, y) , ¬(x .
= y)∧P(x, y)∧∀z

(
P(x, z)∧P(z, y) → (x .

= z∨ y .
= z)

)

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 2 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I “A Hamiltonian path is a path that visits every node exactly once”

ϕ , ∃P
(

“P is a linear order” ∧ ∀x∀y (“y = x + 1” → R(x, y))
)

ϕ , ∃P
(
ψ1(P) ∧ ∀x∀y (ψ2(P, x, y) → R(x, y))

)
ψ1(P) makes predicate-variable P a linear order:

ψ1(P) , ∀x P(x, x) ∧ reflexivity

∀x∀y∀z
(
P(x, y) ∧ P(y, z) → P(x, z)

)
∧ transitivity

∀x∀y
(
P(x, y) ∧ P(y, x) → x .

= y
)
∧ anti-symmetry

∀x∀y
(
P(x, y) ∨ P(y, x)

)
totality

ψ2(P, x, y) is a WFF with free predicate-variable P of arity 2 and first-order
variables x and y, which makes y the successor of x in the linear order P:

ψ2(P, x, y) , ¬(x .
= y)∧P(x, y)∧∀z

(
P(x, z)∧P(z, y) → (x .

= z∨ y .
= z)

)

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 3 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I “A Hamiltonian path is a path that visits every node exactly once”

ϕ , ∃P
(

“P is a linear order” ∧ ∀x∀y (“y = x + 1” → R(x, y))
)

ϕ , ∃P
(
ψ1(P) ∧ ∀x∀y (ψ2(P, x, y) → R(x, y))

)

ψ1(P) makes predicate-variable P a linear order:

ψ1(P) , ∀x P(x, x) ∧ reflexivity

∀x∀y∀z
(
P(x, y) ∧ P(y, z) → P(x, z)

)
∧ transitivity

∀x∀y
(
P(x, y) ∧ P(y, x) → x .

= y
)
∧ anti-symmetry

∀x∀y
(
P(x, y) ∨ P(y, x)

)
totality

ψ2(P, x, y) is a WFF with free predicate-variable P of arity 2 and first-order
variables x and y, which makes y the successor of x in the linear order P:

ψ2(P, x, y) , ¬(x .
= y)∧P(x, y)∧∀z

(
P(x, z)∧P(z, y) → (x .

= z∨ y .
= z)

)

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 4 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I “A Hamiltonian path is a path that visits every node exactly once”

ϕ , ∃P
(

“P is a linear order” ∧ ∀x∀y (“y = x + 1” → R(x, y))
)

ϕ , ∃P
(
ψ1(P) ∧ ∀x∀y (ψ2(P, x, y) → R(x, y))

)
ψ1(P) makes predicate-variable P a linear order:

ψ1(P) , ∀x P(x, x) ∧ reflexivity

∀x∀y∀z
(
P(x, y) ∧ P(y, z) → P(x, z)

)
∧ transitivity

∀x∀y
(
P(x, y) ∧ P(y, x) → x .

= y
)
∧ anti-symmetry

∀x∀y
(
P(x, y) ∨ P(y, x)

)
totality

ψ2(P, x, y) is a WFF with free predicate-variable P of arity 2 and first-order
variables x and y, which makes y the successor of x in the linear order P:

ψ2(P, x, y) , ¬(x .
= y)∧P(x, y)∧∀z

(
P(x, z)∧P(z, y) → (x .

= z∨ y .
= z)

)

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 5 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I “A Hamiltonian path is a path that visits every node exactly once”

ϕ , ∃P
(

“P is a linear order” ∧ ∀x∀y (“y = x + 1” → R(x, y))
)

ϕ , ∃P
(
ψ1(P) ∧ ∀x∀y (ψ2(P, x, y) → R(x, y))

)
ψ1(P) makes predicate-variable P a linear order:

ψ1(P) , ∀x P(x, x) ∧ reflexivity

∀x∀y∀z
(
P(x, y) ∧ P(y, z) → P(x, z)

)
∧ transitivity

∀x∀y
(
P(x, y) ∧ P(y, x) → x .

= y
)
∧ anti-symmetry

∀x∀y
(
P(x, y) ∨ P(y, x)

)
totality

ψ2(P, x, y) is a WFF with free predicate-variable P of arity 2 and first-order
variables x and y, which makes y the successor of x in the linear order P:

ψ2(P, x, y) , ¬(x .
= y)∧P(x, y)∧∀z

(
P(x, z)∧P(z, y) → (x .

= z∨ y .
= z)

)

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 6 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I 2-colorability:
represent color 1 by unary predicate P, and color 2 by ¬P

ϕ , ∃P∀x∀y
(
¬(x .

= y) ∧ R(x, y) → (P(x) ↔ ¬P(y))
)

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 7 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I 2-colorability:
represent color 1 by unary predicate P, and color 2 by ¬P

ϕ , ∃P∀x∀y
(
¬(x .

= y) ∧ R(x, y) → (P(x) ↔ ¬P(y))
)

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 8 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I 3-colorability:
represent 3 colors by unary predicate variables A1, A2, and A3

I ψ1 says “each node has exactly one color”:

ψ1(A1,A2,A3) , ∀x
((

A1(x) ∧ ¬A2(x) ∧ ¬A3(x)
)
∨(

¬A1(x) ∧ A2(x) ∧ ¬A3(x)
)
∨(

¬A1(x) ∧ ¬A2(x) ∧ A3(x)
))

I ψ2 says “no two points with the same color are connected”:

ψ2(A1,A2,A3) , ∀x∀y
((

A1(x) ∧ A1(y) → ¬R(x, y)
)
∧(

A2(x) ∧ A2(y) → ¬R(x, y)
)
∧(

A3(x) ∧ A3(y) → ¬R(x, y)
))

I ϕ , ∃A1∃A2∃A3 (ψ1 ∧ ψ2)

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 9 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I 3-colorability:
represent 3 colors by unary predicate variables A1, A2, and A3

I ψ1 says “each node has exactly one color”:

ψ1(A1,A2,A3) , ∀x
((

A1(x) ∧ ¬A2(x) ∧ ¬A3(x)
)
∨(

¬A1(x) ∧ A2(x) ∧ ¬A3(x)
)
∨(

¬A1(x) ∧ ¬A2(x) ∧ A3(x)
))

I ψ2 says “no two points with the same color are connected”:

ψ2(A1,A2,A3) , ∀x∀y
((

A1(x) ∧ A1(y) → ¬R(x, y)
)
∧(

A2(x) ∧ A2(y) → ¬R(x, y)
)
∧(

A3(x) ∧ A3(y) → ¬R(x, y)
))

I ϕ , ∃A1∃A2∃A3 (ψ1 ∧ ψ2)

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 10 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I 3-colorability:
represent 3 colors by unary predicate variables A1, A2, and A3

I ψ1 says “each node has exactly one color”:

ψ1(A1,A2,A3) , ∀x
((

A1(x) ∧ ¬A2(x) ∧ ¬A3(x)
)
∨(

¬A1(x) ∧ A2(x) ∧ ¬A3(x)
)
∨(

¬A1(x) ∧ ¬A2(x) ∧ A3(x)
))

I ψ2 says “no two points with the same color are connected”:

ψ2(A1,A2,A3) , ∀x∀y
((

A1(x) ∧ A1(y) → ¬R(x, y)
)
∧(

A2(x) ∧ A2(y) → ¬R(x, y)
)
∧(

A3(x) ∧ A3(y) → ¬R(x, y)
))

I ϕ , ∃A1∃A2∃A3 (ψ1 ∧ ψ2)

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 11 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I 3-colorability:
represent 3 colors by unary predicate variables A1, A2, and A3

I ψ1 says “each node has exactly one color”:

ψ1(A1,A2,A3) , ∀x
((

A1(x) ∧ ¬A2(x) ∧ ¬A3(x)
)
∨(

¬A1(x) ∧ A2(x) ∧ ¬A3(x)
)
∨(

¬A1(x) ∧ ¬A2(x) ∧ A3(x)
))

I ψ2 says “no two points with the same color are connected”:

ψ2(A1,A2,A3) , ∀x∀y
((

A1(x) ∧ A1(y) → ¬R(x, y)
)
∧(

A2(x) ∧ A2(y) → ¬R(x, y)
)
∧(

A3(x) ∧ A3(y) → ¬R(x, y)
))

I ϕ , ∃A1∃A2∃A3 (ψ1 ∧ ψ2)

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 12 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I unconnectedness

I ψ1 says “the set A is non-empty and its complement is nonempty”

ψ1(A) , ∃x∃y
(

A(x) ∧ ¬A(y)
)

I ψ2 says “there is no edge between A and its complement”

ψ2(A) , ∀x∀y
((

A(x) ∧ ¬A(y)
)
→

(
¬R(x, y) ∧ ¬R(y, x)

))
I ϕ , ∃A (ψ1 ∧ ψ2)

is true iff graph is not connected

I ϕ′ , ¬ϕ , ∀A (¬ψ1 ∨ ¬ψ2) , ∀A (ψ1 → ¬ψ2)
is true iff graph is connected

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 13 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I unconnectedness
I ψ1 says “the set A is non-empty and its complement is nonempty”

ψ1(A) , ∃x∃y
(

A(x) ∧ ¬A(y)
)

I ψ2 says “there is no edge between A and its complement”

ψ2(A) , ∀x∀y
((

A(x) ∧ ¬A(y)
)
→

(
¬R(x, y) ∧ ¬R(y, x)

))
I ϕ , ∃A (ψ1 ∧ ψ2)

is true iff graph is not connected

I ϕ′ , ¬ϕ , ∀A (¬ψ1 ∨ ¬ψ2) , ∀A (ψ1 → ¬ψ2)
is true iff graph is connected

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 14 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I unconnectedness
I ψ1 says “the set A is non-empty and its complement is nonempty”

ψ1(A) , ∃x∃y
(

A(x) ∧ ¬A(y)
)

I ψ2 says “there is no edge between A and its complement”

ψ2(A) , ∀x∀y
((

A(x) ∧ ¬A(y)
)
→

(
¬R(x, y) ∧ ¬R(y, x)

))

I ϕ , ∃A (ψ1 ∧ ψ2)
is true iff graph is not connected

I ϕ′ , ¬ϕ , ∀A (¬ψ1 ∨ ¬ψ2) , ∀A (ψ1 → ¬ψ2)
is true iff graph is connected

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 15 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I unconnectedness
I ψ1 says “the set A is non-empty and its complement is nonempty”

ψ1(A) , ∃x∃y
(

A(x) ∧ ¬A(y)
)

I ψ2 says “there is no edge between A and its complement”

ψ2(A) , ∀x∀y
((

A(x) ∧ ¬A(y)
)
→

(
¬R(x, y) ∧ ¬R(y, x)

))
I ϕ , ∃A (ψ1 ∧ ψ2)

is true iff graph is not connected

I ϕ′ , ¬ϕ , ∀A (¬ψ1 ∨ ¬ψ2) , ∀A (ψ1 → ¬ψ2)
is true iff graph is connected

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 16 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I unconnectedness
I ψ1 says “the set A is non-empty and its complement is nonempty”

ψ1(A) , ∃x∃y
(

A(x) ∧ ¬A(y)
)

I ψ2 says “there is no edge between A and its complement”

ψ2(A) , ∀x∀y
((

A(x) ∧ ¬A(y)
)
→

(
¬R(x, y) ∧ ¬R(y, x)

))
I ϕ , ∃A (ψ1 ∧ ψ2)

is true iff graph is not connected

I ϕ′ , ¬ϕ , ∀A (¬ψ1 ∨ ¬ψ2) , ∀A (ψ1 → ¬ψ2)
is true iff graph is connected

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 17 of 21

examples with graphs (A,R)
where A is the set of nodes and R is a binary relation representing edges

I reachability

Example 2.27 in [LCS. page 140].

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 18 of 21

connections with descriptive complexity theory
I Starting point:

Syntactic classification of second-order WFF’s in prenex normal form ,
over a given signature Σ, according to:

1. interleaving of universal and existential quantifiers in the prenex, and
2. arities of predicate and function symbols in Σ.

I Example:
The WFF ϕ in each on slide 4, slide 7, slide 11, and slide 16 is an

existential second-order WFF .

I Example:
The ϕ in each of slide 7, slide 11, and slide 16, but not on slide 4, is a
monadic second-order WFF , because the second-order variables in ϕ

are restricted to be unary-predicate (i.e., set) variables.

I Example:
Monadic second-order logic has been extensively studied in relation to
graph properties and their complexities. (Search the WWW with the
keyword “monadic second-order logic.”)

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 19 of 21

connections with descriptive complexity theory
I Prototypical result of descriptive complexity theory:

Fagin’s theorem: Let C be the class of all finite undirected graphs (closed
under isomorphism). The following are equivalent statements:

1. C is in NP.
2. C is definable by an existential second-order sentence.

In fact, every class of objects in NP has an existential second-order
characterization with binary predicates and a universal first-order part.

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 20 of 21

Assaf Kfoury, CS 512, Spring 2017, Handout 33 page 21 of 21

