CS 512, Spring 2017, Handout 33

Second Order Logic
 (with several examples in formal modeling)

Assaf Kfoury

26 April 2017

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- "A Hamiltonian path is a path that visits every node exactly once"

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- "A Hamiltonian path is a path that visits every node exactly once"

$$
\varphi \triangleq \exists P(\text { " } P \text { is a linear order" } \wedge \forall x \forall y(" y=x+1 " \rightarrow R(x, y)))
$$

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- "A Hamiltonian path is a path that visits every node exactly once"

$$
\begin{aligned}
& \varphi \triangleq \exists P(" P \text { is a linear order" } \wedge \forall x \forall y(" y=x+1 " \rightarrow R(x, y))) \\
& \varphi \triangleq \exists P\left(\psi_{1}(P) \wedge \forall x \forall y\left(\psi_{2}(P, x, y) \rightarrow R(x, y)\right)\right)
\end{aligned}
$$

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- "A Hamiltonian path is a path that visits every node exactly once"

$$
\begin{aligned}
& \varphi \triangleq \exists P(\text { " } P \text { is a linear order" } \wedge \forall x \forall y(" y=x+1 \text { " } \rightarrow R(x, y))) \\
& \varphi \triangleq \exists P\left(\psi_{1}(P) \wedge \forall x \forall y\left(\psi_{2}(P, x, y) \rightarrow R(x, y)\right)\right)
\end{aligned}
$$

$\psi_{1}(P)$ makes predicate-variable P a linear order:

$$
\begin{aligned}
\psi_{1}(P) \triangleq & \forall x P(x, x) \wedge & & \text { reflexivity } \\
& \forall x \forall y \forall z(P(x, y) \wedge P(y, z) \rightarrow P(x, z)) \wedge & & \text { transitivity } \\
& \forall x \forall y(P(x, y) \wedge P(y, x) \rightarrow x \doteq y) \wedge & & \text { anti-symmetry } \\
& \forall x \forall y(P(x, y) \vee P(y, x)) & & \text { totality }
\end{aligned}
$$

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- "A Hamiltonian path is a path that visits every node exactly once"

$$
\begin{aligned}
& \varphi \triangleq \exists P(" P \text { is a linear order" } \wedge \forall x \forall y(" y=x+1 " \rightarrow R(x, y))) \\
& \varphi \triangleq \exists P\left(\psi_{1}(P) \wedge \forall x \forall y\left(\psi_{2}(P, x, y) \rightarrow R(x, y)\right)\right)
\end{aligned}
$$

$\psi_{1}(P)$ makes predicate-variable P a linear order:

$$
\begin{aligned}
\psi_{1}(P) \triangleq & \forall x P(x, x) \wedge & & \text { reflexivity } \\
& \forall x \forall y \forall z(P(x, y) \wedge P(y, z) \rightarrow P(x, z)) \wedge & & \text { transitivity } \\
& \forall x \forall y(P(x, y) \wedge P(y, x) \rightarrow x \doteq y) \wedge & & \text { anti-symmetry } \\
& \forall x \forall y(P(x, y) \vee P(y, x)) & & \text { totality }
\end{aligned}
$$

$\psi_{2}(P, x, y)$ is a WFF with free predicate-variable P of arity 2 and first-order variables x and y, which makes y the successor of x in the linear order P :

$$
\psi_{2}(P, x, y) \triangleq \neg(x \doteq y) \wedge P(x, y) \wedge \forall z(P(x, z) \wedge P(z, y) \rightarrow(x \doteq z \vee y \doteq z))
$$

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- 2-colorability:
represent color 1 by unary predicate P, and color 2 by $\neg P$

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- 2-colorability:
represent color 1 by unary predicate P, and color 2 by $\neg P$

$$
\varphi \triangleq \exists P \forall x \forall y(\neg(x \doteq y) \wedge R(x, y) \rightarrow(P(x) \leftrightarrow \neg P(y)))
$$

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- 3-colorability:
represent 3 colors by unary predicate variables A_{1}, A_{2}, and A_{3}

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- 3-colorability:
represent 3 colors by unary predicate variables A_{1}, A_{2}, and A_{3}
- ψ_{1} says "each node has exactly one color":

$$
\begin{aligned}
\psi_{1}\left(A_{1}, A_{2}, A_{3}\right) \triangleq \forall x(& \left(A_{1}(x) \wedge \neg A_{2}(x) \wedge \neg A_{3}(x)\right) \vee \\
& \left(\neg A_{1}(x) \wedge A_{2}(x) \wedge \neg A_{3}(x)\right) \vee \\
& \left.\left(\neg A_{1}(x) \wedge \neg A_{2}(x) \wedge A_{3}(x)\right)\right)
\end{aligned}
$$

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- 3-colorability:
represent 3 colors by unary predicate variables A_{1}, A_{2}, and A_{3}
- ψ_{1} says "each node has exactly one color":

$$
\begin{aligned}
\psi_{1}\left(A_{1}, A_{2}, A_{3}\right) \triangleq \forall x(& \left(A_{1}(x) \wedge \neg A_{2}(x) \wedge \neg A_{3}(x)\right) \vee \\
& \left(\neg A_{1}(x) \wedge A_{2}(x) \wedge \neg A_{3}(x)\right) \vee \\
& \left.\left(\neg A_{1}(x) \wedge \neg A_{2}(x) \wedge A_{3}(x)\right)\right)
\end{aligned}
$$

- ψ_{2} says "no two points with the same color are connected":

$$
\left.\left.\begin{array}{rl}
\psi_{2}\left(A_{1}, A_{2}, A_{3}\right) \triangleq \forall x \forall y(& \left(A_{1}(x) \wedge A_{1}(y)\right.
\end{array} \rightarrow \neg R(x, y)\right) \wedge, ~\left(A_{2}(x) \wedge A_{2}(y) \rightarrow \neg R(x, y)\right) \wedge, ~\left(A_{3}(x) \wedge A_{3}(y) \rightarrow \neg R(x, y)\right)\right)
$$

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- 3-colorability: represent 3 colors by unary predicate variables A_{1}, A_{2}, and A_{3}
- ψ_{1} says "each node has exactly one color":

$$
\begin{aligned}
\psi_{1}\left(A_{1}, A_{2}, A_{3}\right) \triangleq \forall x(& \left(A_{1}(x) \wedge \neg A_{2}(x) \wedge \neg A_{3}(x)\right) \vee \\
& \left(\neg A_{1}(x) \wedge A_{2}(x) \wedge \neg A_{3}(x)\right) \vee \\
& \left.\left(\neg A_{1}(x) \wedge \neg A_{2}(x) \wedge A_{3}(x)\right)\right)
\end{aligned}
$$

- ψ_{2} says "no two points with the same color are connected":

$$
\left.\left.\begin{array}{rl}
\psi_{2}\left(A_{1}, A_{2}, A_{3}\right) \triangleq \forall x \forall y(& \left(A_{1}(x) \wedge A_{1}(y)\right.
\end{array} \rightarrow \neg R(x, y)\right) \wedge, ~\left(A_{2}(x) \wedge A_{2}(y) \rightarrow \neg R(x, y)\right) \wedge, ~\left(A_{3}(x) \wedge A_{3}(y) \rightarrow \neg R(x, y)\right)\right)
$$

- $\varphi \triangleq \exists A_{1} \exists A_{2} \exists A_{3}\left(\psi_{1} \wedge \psi_{2}\right)$

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- unconnectedness

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- unconnectedness
- ψ_{1} says "the set A is non-empty and its complement is nonempty"

$$
\psi_{1}(A) \triangleq \exists x \exists y(A(x) \wedge \neg A(y))
$$

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- unconnectedness
- ψ_{1} says "the set A is non-empty and its complement is nonempty"

$$
\psi_{1}(A) \triangleq \exists x \exists y(A(x) \wedge \neg A(y))
$$

- ψ_{2} says "there is no edge between A and its complement"

$$
\psi_{2}(A) \triangleq \forall x \forall y((A(x) \wedge \neg A(y)) \rightarrow(\neg R(x, y) \wedge \neg R(y, x)))
$$

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- unconnectedness
- ψ_{1} says "the set A is non-empty and its complement is nonempty"

$$
\psi_{1}(A) \triangleq \exists x \exists y(A(x) \wedge \neg A(y))
$$

- ψ_{2} says "there is no edge between A and its complement"

$$
\psi_{2}(A) \triangleq \forall x \forall y((A(x) \wedge \neg A(y)) \rightarrow(\neg R(x, y) \wedge \neg R(y, x)))
$$

- $\varphi \triangleq \exists A\left(\psi_{1} \wedge \psi_{2}\right)$
is true iff graph is not connected

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- unconnectedness
- ψ_{1} says "the set A is non-empty and its complement is nonempty"

$$
\psi_{1}(A) \triangleq \exists x \exists y(A(x) \wedge \neg A(y))
$$

- ψ_{2} says "there is no edge between A and its complement"

$$
\psi_{2}(A) \triangleq \forall x \forall y((A(x) \wedge \neg A(y)) \rightarrow(\neg R(x, y) \wedge \neg R(y, x)))
$$

- $\varphi \triangleq \exists A\left(\psi_{1} \wedge \psi_{2}\right)$
is true iff graph is not connected
- $\varphi^{\prime} \triangleq \neg \varphi \triangleq \forall A\left(\neg \psi_{1} \vee \neg \psi_{2}\right) \triangleq \forall A\left(\psi_{1} \rightarrow \neg \psi_{2}\right)$
is true iff graph is connected

examples with graphs (A, R)

where A is the set of nodes and R is a binary relation representing edges

- reachability

Example 2.27 in [LCS. page 140].

connections with descriptive complexity theory

- Starting point:

Syntactic classification of second-order WFF's in prenex normal form , over a given signature Σ, according to:

1. interleaving of universal and existential quantifiers in the prenex, and
2. arities of predicate and function symbols in Σ.

- Example:

The WFF φ in each on slide 4 , slide 7 , slide 11 , and slide 16 is an existential second-order WFF .

- Example:

The φ in each of slide 7 , slide 11 , and slide 16 , but not on slide 4 , is a monadic second-order WFF, because the second-order variables in φ are restricted to be unary-predicate (i.e., set) variables.

- Example:

Monadic second-order logic has been extensively studied in relation to graph properties and their complexities. (Search the WWW with the keyword "monadic second-order logic.")

connections with descriptive complexity theory

- Prototypical result of descriptive complexity theory:

Fagin's theorem: Let \mathcal{C} be the class of all finite undirected graphs (closed under isomorphism). The following are equivalent statements:

1. \mathcal{C} is in NP.
2. \mathcal{C} is definable by an existential second-order sentence. In fact, every class of objects in NP has an existential second-order characterization with binary predicates and a universal first-order part.
