
CS 512, Spring 2017, Handout 34

Program Schemes and First-Order Logic

Assaf Kfoury

2 May 2017

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 1 of 22

PROGRAMS and PROGRAM SCHEMES

I Let P be a program in some program language
(e.g., Python, Java, Haskell, C, etc.).

I P uses several primitive operators (“prim ops”)
(e.g., +, ×, ÷, div, mod, <=, !=, etc.)

I P operates over one or several domains
(e.g., Z, Q, B, etc.)

I We obtain a program scheme S from P by omitting the meaning of all the prim
ops and leaving them as uninterpreted functions and uninterpreted relations.

I S is thus the part of P that directs execution according to P’s code, i.e., S can be
viewed as P’s control structure which determines P’s flow of execution.

I We recover P from S by restoring the meaning of all the prim ops.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 2 of 22

PROGRAMS and PROGRAM SCHEMES

I Let P be a program in some program language
(e.g., Python, Java, Haskell, C, etc.).

I P uses several primitive operators (“prim ops”)
(e.g., +, ×, ÷, div, mod, <=, !=, etc.)

I P operates over one or several domains
(e.g., Z, Q, B, etc.)

I We obtain a program scheme S from P by omitting the meaning of all the prim
ops and leaving them as uninterpreted functions and uninterpreted relations.

I S is thus the part of P that directs execution according to P’s code, i.e., S can be
viewed as P’s control structure which determines P’s flow of execution.

I We recover P from S by restoring the meaning of all the prim ops.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 3 of 22

example: a PROGRAM P and corresponding PROGRAM SCHEME S
Euclidean GCD program

precondition :

x > 0 and y > 0

1 : m := min(x,y)

2 : n := max(x,y)

3 : while m 6= 0

4 : r := (n mod m)

5 : n := m

6 : m := r

7 : return n

corresponding program scheme

precondition :

R (x,c) ∧ R (y,c)

1 : m := lo (x,y)

2 : n := hi (x,y)

3 : while ¬(m .
= c)

4 : r := f (n,m)

5 : n := m

6 : m := r

7 : return n

Program execution is fully determined by the values of input variables x and y, i.e., by constraints
exclusively involving x and y and none of the program/internal variables {m,n,r}, e.g., consider the
number of times the loop body {4,5,6} is executed.

For example, {4,5,6} is executed twice iff:

min(x,y) 6= 0 &

max(x,y) mod min(x,y) 6= 0 &

min(x,y) mod
(
max(x,y) mod min(x,y)

)
= 0

¬
(

lo x y .
= c

)
∧

¬
(

f (hi x y, lo x y) .
= c

)
∧

f
(

lo x y, f (hi x y, lo x y)
) .
= c

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 4 of 22

example: a PROGRAM P and corresponding PROGRAM SCHEME S
Euclidean GCD program

precondition :

x > 0 and y > 0

1 : m := min(x,y)

2 : n := max(x,y)

3 : while m 6= 0

4 : r := (n mod m)

5 : n := m

6 : m := r

7 : return n

corresponding program scheme

precondition :

R (x,c) ∧ R (y,c)

1 : m := lo (x,y)

2 : n := hi (x,y)

3 : while ¬(m .
= c)

4 : r := f (n,m)

5 : n := m

6 : m := r

7 : return n

Program execution is fully determined by the values of input variables x and y, i.e., by constraints
exclusively involving x and y and none of the program/internal variables {m,n,r}, e.g., consider the
number of times the loop body {4,5,6} is executed.

For example, {4,5,6} is executed twice iff:

min(x,y) 6= 0 &

max(x,y) mod min(x,y) 6= 0 &

min(x,y) mod
(
max(x,y) mod min(x,y)

)
= 0

¬
(

lo x y .
= c

)
∧

¬
(

f (hi x y, lo x y) .
= c

)
∧

f
(

lo x y, f (hi x y, lo x y)
) .
= c

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 5 of 22

example: a PROGRAM P and corresponding PROGRAM SCHEME S
Euclidean GCD program

precondition :

x > 0 and y > 0

1 : m := min(x,y)

2 : n := max(x,y)

3 : while m 6= 0

4 : r := (n mod m)

5 : n := m

6 : m := r

7 : return n

corresponding program scheme

precondition :

R (x,c) ∧ R (y,c)

1 : m := lo (x,y)

2 : n := hi (x,y)

3 : while ¬(m .
= c)

4 : r := f (n,m)

5 : n := m

6 : m := r

7 : return n

Program execution is fully determined by the values of input variables x and y, i.e., by constraints
exclusively involving x and y and none of the program/internal variables {m,n,r}, e.g., consider the
number of times the loop body {4,5,6} is executed.

For example, {4,5,6} is executed twice iff:

min(x,y) 6= 0 &

max(x,y) mod min(x,y) 6= 0 &

min(x,y) mod
(
max(x,y) mod min(x,y)

)
= 0

¬
(

lo x y .
= c

)
∧

¬
(

f (hi x y, lo x y) .
= c

)
∧

f
(

lo x y, f (hi x y, lo x y)
) .
= c

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 6 of 22

example: a PROGRAM P and corresponding PROGRAM SCHEME S
Euclidean GCD program

precondition :

x > 0 and y > 0

1 : m := min(x,y)

2 : n := max(x,y)

3 : while m 6= 0

4 : r := (n mod m)

5 : n := m

6 : m := r

7 : return n

corresponding program scheme

precondition :

R (x,c) ∧ R (y,c)

1 : m := lo (x,y)

2 : n := hi (x,y)

3 : while ¬(m .
= c)

4 : r := f (n,m)

5 : n := m

6 : m := r

7 : return n

Program execution is fully determined by the values of input variables x and y, i.e., by constraints
exclusively involving x and y and none of the program/internal variables {m,n,r}, e.g., consider the
number of times the loop body {4,5,6} is executed.

For example, {4,5,6} is executed twice iff:

min(x,y) 6= 0 &

max(x,y) mod min(x,y) 6= 0 &

min(x,y) mod
(
max(x,y) mod min(x,y)

)
= 0

¬
(

lo x y .
= c

)
∧

¬
(

f (hi x y, lo x y) .
= c

)
∧

f
(

lo x y, f (hi x y, lo x y)
) .
= c

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 7 of 22

example: a PROGRAM P and corresponding PROGRAM SCHEME S
Euclidean GCD program

precondition :

x > 0 and y > 0

1 : m := min(x,y)

2 : n := max(x,y)

3 : while m 6= 0

4 : r := (n mod m)

5 : n := m

6 : m := r

7 : return n

corresponding program scheme

precondition :

R (x,c) ∧ R (y,c)

1 : m := lo (x,y)

2 : n := hi (x,y)

3 : while ¬(m .
= c)

4 : r := f (n,m)

5 : n := m

6 : m := r

7 : return n

Program execution is fully determined by the values of input variables x and y, i.e., by constraints
exclusively involving x and y and none of the program/internal variables {m,n,r}, e.g., consider the
number of times the loop body {4,5,6} is executed.

For example, {4,5,6} is executed twice iff:

min(x,y) 6= 0 &

max(x,y) mod min(x,y) 6= 0 &

min(x,y) mod
(
max(x,y) mod min(x,y)

)
= 0

¬
(

lo x y .
= c

)
∧

¬
(

f (hi x y, lo x y) .
= c

)
∧

f
(

lo x y, f (hi x y, lo x y)
) .
= c

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 8 of 22

example: unwinding a PROGRAM SCHEME into an INFINITE FLOW DIAGRAM

precondition :

R (x,c)∧R (y,c)

1 : m := lo (x,y)

2 : n := hi (x,y)

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

...
...

I every diverging execution is
described by an infinite sequence of
instruction labels of the form:

1 2 (3 4 5 6)ω

I every converging execution is
described by a finite sequence of
instruction labels of the form:

1 2 (3 4 5 6)∗ 3 7

I every diverging execution is
specified by an infinite set of
quantifier-free first-order WFF’s over
the signature {R , lo ,hi , f ,c} and
input variables {x,y}

I every converging execution is
specified by a finite set of
quantifier-free first-order WFF’s over
the signature {R , lo ,hi , f ,c} and
input variables {x,y}

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 9 of 22

example: unwinding a PROGRAM SCHEME into an INFINITE FLOW DIAGRAM

precondition :

R (x,c)∧R (y,c)

1 : m := lo (x,y)

2 : n := hi (x,y)

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

...
...

I every diverging execution is
described by an infinite sequence of
instruction labels of the form:

1 2 (3 4 5 6)ω

I every converging execution is
described by a finite sequence of
instruction labels of the form:

1 2 (3 4 5 6)∗ 3 7

I every diverging execution is
specified by an infinite set of
quantifier-free first-order WFF’s over
the signature {R , lo ,hi , f ,c} and
input variables {x,y}

I every converging execution is
specified by a finite set of
quantifier-free first-order WFF’s over
the signature {R , lo ,hi , f ,c} and
input variables {x,y}

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 10 of 22

example: unwinding a PROGRAM SCHEME into an INFINITE FLOW DIAGRAM

precondition :

R (x,c)∧R (y,c)

1 : m := lo (x,y)

2 : n := hi (x,y)

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

...
...

I every diverging execution is
described by an infinite sequence of
instruction labels of the form:

1 2 (3 4 5 6)ω

I every converging execution is
described by a finite sequence of
instruction labels of the form:

1 2 (3 4 5 6)∗ 3 7

I every diverging execution is
specified by an infinite set of
quantifier-free first-order WFF’s over
the signature {R , lo ,hi , f ,c } and
input variables {x,y}

I every converging execution is
specified by a finite set of
quantifier-free first-order WFF’s over
the signature {R , lo ,hi , f ,c } and
input variables {x,y}

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 11 of 22

from PROGRAM SCHEMES to FIRST-ORDER LOGIC

I Let P be a deterministic sequential program whose prim ops are the interpretations
of the predicate symbols and function symbols of a signature Σ in a Σ-structure M .

I Let X , {x1, . . . ,xm}, Y , {y1, . . . ,yn}, and Z , {z1, . . . ,zp}, be input variables,
output variables, and program variables of P, with m > 1, n > 0, and p > 0.

In particular, an execution of P is triggered by an assignment of values from the
domains of M to the input variables X. If and when an execution of P terminates,
the returned output is the set of values stored in the variables Y .

I Let S be the program scheme corresponding to program P, i.e., the interpretation
of S in M , denoted SM , is exactly P.

I Theorem 1: Let Paths(S), {π1,π2, . . .} be the set of all finite execution paths in
program scheme S. Let every test in S be a first-order WFF ϕ over signature Σ with
FV(ϕ)⊆ X∪Y ∪Z.

For every πi ∈ Paths(S) there is a first-order WFF αi over Σ with
FV(αi)⊆ {x1, . . . ,xm} such that for every execution of P = SM on input values
~a , (a1, . . . ,am):

the execution converges by following path πi iff (M ,~a) |= αi .

I Let PathConstraints(S), {α1,α2, . . .} be the first-order WFF’s thus defined over
signature Σ with free variables in X.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 12 of 22

from PROGRAM SCHEMES to FIRST-ORDER LOGIC

I Let P be a deterministic sequential program whose prim ops are the interpretations
of the predicate symbols and function symbols of a signature Σ in a Σ-structure M .

I Let X , {x1, . . . ,xm}, Y , {y1, . . . ,yn}, and Z , {z1, . . . ,zp}, be input variables,
output variables, and program variables of P, with m > 1, n > 0, and p > 0.

In particular, an execution of P is triggered by an assignment of values from the
domains of M to the input variables X. If and when an execution of P terminates,
the returned output is the set of values stored in the variables Y .

I Let S be the program scheme corresponding to program P, i.e., the interpretation
of S in M , denoted SM , is exactly P.

I Theorem 1: Let Paths(S), {π1,π2, . . .} be the set of all finite execution paths in
program scheme S. Let every test in S be a first-order WFF ϕ over signature Σ with
FV(ϕ)⊆ X∪Y ∪Z.

For every πi ∈ Paths(S) there is a first-order WFF αi over Σ with
FV(αi)⊆ {x1, . . . ,xm} such that for every execution of P = SM on input values
~a , (a1, . . . ,am):

the execution converges by following path πi iff (M ,~a) |= αi .

I Let PathConstraints(S), {α1,α2, . . .} be the first-order WFF’s thus defined over
signature Σ with free variables in X.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 13 of 22

from PROGRAM SCHEMES to FIRST-ORDER LOGIC

I Theorem 2 is a weaker version of Theorem 1 that applies to common
programming languages (Python, Java, Haskell, C, etc.) – why?

I Theorem 2: Let Paths(S), {π1,π2, . . .} be the set of all finite execution paths in
program scheme S. Let every test in S be a first-order literal (i.e., an atomic or
negated atomic WFF) over signature Σ with variables in X∪Y ∪Z.

For every πi ∈ Paths(S) there is a conjunction αi of literals over Σ with variables in
{x1, . . . ,xm} such that for every execution of P = SM on input values
~a , (a1, . . . ,am):

the execution converges by following path πi iff (M ,~a) |= αi .

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 14 of 22

from PROGRAM SCHEMES to FIRST-ORDER LOGIC

I Let S be a program scheme whose prim ops are in the signature Σ and whose
input variables are X = {x1, . . . ,xm}. Let C be a class of Σ-structures.
Let Φ , {ϕ1,ϕ2, . . .} be a set (possibly infinite) of first-order WFF’s over
signature Σ with FV(ϕi)⊆ {x1, . . . ,xm} for every i > 1.

We say that Φ enforces totality of program scheme S (i.e.,
termination/convergence of all executions by S) in the class C iff:

for every M ∈ C and every m-tuple~a , (a1, . . . ,am) of inputs

from the domains of M , if (M ,~a) |= Φ then the execution of SM (~a) converges.

I Corollary: The following are equivalent statements:

1. Φ , {ϕ1,ϕ2, . . .} enforces totality of program scheme S in class C .
2. For every M ∈ C and all inputs~a , (a1, . . . ,am) from the domains of M ,

it holds that if (M ,~a) |= Φ then (M ,~a) |=
∨

j>1 αj.

3. For every M ∈ C and all inputs~a , (a1, . . . ,am) from the domains of M ,
it holds that (M ,~a) |=

(∧
i>1 ϕi→

∨
j>1 αj

)
.

4. For every M ∈ C , it holds that M |= ∀~x
(∧

i>1 ϕi→
∨

i>1 αi
)
.

Note: If Φ is an infinite set, then
∧

i>1 ϕi is an infinitary conjunction, and thus not in the
syntax of first-order logic. Likewise,

∨
i>1 αi is an infinitary disjunction, and thus not in the

syntax of first-order logic, when PathConstraints(S) = {α1,α2, . . .} is an infinite set.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 15 of 22

from PROGRAM SCHEMES to FIRST-ORDER LOGIC

I Let S be a program scheme whose prim ops are in the signature Σ and whose
input variables are X = {x1, . . . ,xm}. Let C be a class of Σ-structures.
Let Φ , {ϕ1,ϕ2, . . .} be a set (possibly infinite) of first-order WFF’s over
signature Σ with FV(ϕi)⊆ {x1, . . . ,xm} for every i > 1.

We say that Φ enforces totality of program scheme S (i.e.,
termination/convergence of all executions by S) in the class C iff:

for every M ∈ C and every m-tuple~a , (a1, . . . ,am) of inputs

from the domains of M , if (M ,~a) |= Φ then the execution of SM (~a) converges.

I Corollary: The following are equivalent statements:

1. Φ , {ϕ1,ϕ2, . . .} enforces totality of program scheme S in class C .
2. For every M ∈ C and all inputs~a , (a1, . . . ,am) from the domains of M ,

it holds that if (M ,~a) |= Φ then (M ,~a) |=
∨

j>1 αj.

3. For every M ∈ C and all inputs~a , (a1, . . . ,am) from the domains of M ,
it holds that (M ,~a) |=

(∧
i>1 ϕi→

∨
j>1 αj

)
.

4. For every M ∈ C , it holds that M |= ∀~x
(∧

i>1 ϕi→
∨

i>1 αi
)
.

Note: If Φ is an infinite set, then
∧

i>1 ϕi is an infinitary conjunction, and thus not in the
syntax of first-order logic. Likewise,

∨
i>1 αi is an infinitary disjunction, and thus not in the

syntax of first-order logic, when PathConstraints(S) = {α1,α2, . . .} is an infinite set.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 16 of 22

HOW STRONG CAN WE HOPE TO MAKE THE PRECONDITIONS?
I We think of Φ as a set of formal preconditions for program scheme S.

Question: Given an arbitrary program scheme S, can we formulate the
preconditions Φ, as a set of first-order WFF’s, to enforce totality of S?

I Exercise: Let S be an arbitrary program scheme over some signature Σ with input
variables X , {x1, . . . ,xm}.
Define an infinitary WFF Ψ (note: Ψ is not restricted to be first-order) over
signature Σ with FV(Ψ)⊆ X such that for every Σ-structure M and all inputs
~a , (a1, . . . ,am) from the domains of M , it holds that

if (M ,~a) |= Ψ then the execution of SM (~a) converges .

In words, Ψ enforces totality of S in all Σ-structures M , not restricted to any
particular class.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 17 of 22

HOW STRONG CAN WE HOPE TO MAKE THE PRECONDITIONS?
I We think of Φ as a set of formal preconditions for program scheme S.

Question: Given an arbitrary program scheme S, can we formulate the
preconditions Φ, as a set of first-order WFF’s, to enforce totality of S?

I Exercise: Let S be an arbitrary program scheme over some signature Σ with input
variables X , {x1, . . . ,xm}.
Define an infinitary WFF Ψ (note: Ψ is not restricted to be first-order) over
signature Σ with FV(Ψ)⊆ X such that for every Σ-structure M and all inputs
~a , (a1, . . . ,am) from the domains of M , it holds that

if (M ,~a) |= Ψ then the execution of SM (~a) converges .

In words, Ψ enforces totality of S in all Σ-structures M , not restricted to any
particular class.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 18 of 22

THE UNWIND PROPERTY

I Let S be a program scheme over some signature Σ with input variables X , {x1, . . . ,xm}.
We say S unwinds in a class C of Σ-structures iff there is a finite subset
{π1, . . . ,πk} ⊆ Paths(S) and corresponding finite subset {α1, . . . ,αk} ⊆ PathConstraints(S)
such that, for all M ∈ C and all inputs~a , (a1, . . . ,am) from the domains of M :

the execution of SM (~a) converges iff (M ,~a) |= α1 ∨ . . .∨αk .

Informally, only a finite set of k > 1 paths are used by converging executions of S. Put
differently, if S unwinds in the class C , then S is equivalent to a “trivial” (i.e., loop-free)
program scheme.

I Theorem 3: Let S be a program scheme over signature Σ with input variables
X , {x1, . . . ,xm}. Let Φ be a set (possibly infinite) of first-order WFF’s over
signature Σ with FV(Φ)⊆ X and let C , {M |M |= Φ}.1

If Φ enforces totality of S in the class C , then S unwinds in the class C .

In other words, we cannot constrain the interpretations in C for a program scheme
S by first-order conditions Φ in order to ensure termination – unless we also make
superfluous the presence of the loops in S.

1Strictly, {M |M |= Φ} is the class defined as {M | (M ,~a) |= Φ for all m-tuples~a from the domains of M }.
FV(Φ)⊆ {x1 , . . . ,xm} and~a is an assignment of values to the free variables in Φ.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 19 of 22

THE UNWIND PROPERTY

I Let S be a program scheme over some signature Σ with input variables X , {x1, . . . ,xm}.
We say S unwinds in a class C of Σ-structures iff there is a finite subset
{π1, . . . ,πk} ⊆ Paths(S) and corresponding finite subset {α1, . . . ,αk} ⊆ PathConstraints(S)
such that, for all M ∈ C and all inputs~a , (a1, . . . ,am) from the domains of M :

the execution of SM (~a) converges iff (M ,~a) |= α1 ∨ . . .∨αk .

Informally, only a finite set of k > 1 paths are used by converging executions of S. Put
differently, if S unwinds in the class C , then S is equivalent to a “trivial” (i.e., loop-free)
program scheme.

I Theorem 3: Let S be a program scheme over signature Σ with input variables
X , {x1, . . . ,xm}. Let Φ be a set (possibly infinite) of first-order WFF’s over
signature Σ with FV(Φ)⊆ X and let C , {M |M |= Φ}.1

If Φ enforces totality of S in the class C , then S unwinds in the class C .

In other words, we cannot constrain the interpretations in C for a program scheme
S by first-order conditions Φ in order to ensure termination – unless we also make
superfluous the presence of the loops in S.

1Strictly, {M |M |= Φ} is the class defined as {M | (M ,~a) |= Φ for all m-tuples~a from the domains of M }.
FV(Φ)⊆ {x1 , . . . ,xm} and~a is an assignment of values to the free variables in Φ.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 20 of 22

THE UNWIND PROPERTY

I Proof Sketch for Theorem 3: By contradiction. Assume that Φ enforces totality of
S in the class C , but yet S does not unwind in the class C , and we then get a
contradiction.

Consider PathConstraints(S) = {α1,α2, . . .}. By the Corollary of Theorems 1 and
2 (see part 2 in particular), together with the preceding assumption, we must have:
For every k > 1 there is a Σ-structure M ∈ C and there are inputs
~a , (a1, . . . ,am) from the domains of M such that (M ,~a) |= Φ∪{¬α1, . . . ,¬αk}
(straightforward details of this argument are omitted).

Hence, for every k > 1, the set of first-order WFF’s Φ∪{¬α1, . . . ,¬αk} is
consistent. Hence, by Compactness of first-order logic, the full set
Φ∪{¬α1,¬α2, . . .} is consistent/satisfiable. Hence, there is a Σ-structure M ∈ C
and there are inputs~a , (a1, . . . ,am) from the domains of M such that
(M ,~a) |= Φ∪{¬α1,¬α2, . . .} and, in particular, (M ,~a) |= {¬α1,¬α2, . . .} which
implies that SM (~a) does not converge. But this contradicts the assumption that Φ

enforces totality of S in the class C (again, straightforward details are omitted).

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 21 of 22

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 22 of 22

