CS 512, Spring 2017, Handout 34

Program Schemes and First-Order Logic

Assaf Kfoury

2 May 2017

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 1 of 22

PROGRAMS and PROGRAM SCHEMES
> Let Pbe a program in some program language
(e.g., Python, Java, Haskell, C, etc.).

> P uses several primitive operators (“prim ops”)
(e.g., +, X, =+, div, mod, <=, !=, etc.)

» P operates over one or several domains
(e.9.,Z,Q, B, etc.)

Assaf Kfoury, CS 512, Spring 2017, Handout 34

page 2 of 22

PROGRAMS and PROGRAM SCHEMES
> Let Pbe a program in some program language
(e.g., Python, Java, Haskell, C, etc.).

> P uses several primitive operators (“prim ops”)
(e.g., +, X, =+, div, mod, <=, !=, etc.)

» P operates over one or several domains
(e.9.,Z,Q, B, etc.)

> We obtain a program scheme S from P by omitting the meaning of all the prim
ops and leaving them as uninterpreted functions and uninterpreted relations.

> Sis thus the part of P that directs execution according to P’s code, i.e., S can be
viewed as P’s control structure which determines P’s flow of execution.

» We recover P from S by restoring the meaning of all the prim ops.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 3 of 22

example: a PROGRAM P and corresponding PROGRAM SCHEME §

Euclidean GCD program

precondition :
x>0andy>0

1: m:=min(x,y)

2: n:=max(x,y)

3: whilem#0

4: r:= (nmod m)
5: n:=m

6: m:=r

7: return n

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 4 of 22

example: a PROGRAM P and corresponding PROGRAM SCHEME §

Euclidean GCD program corresponding program scheme
precondition : precondition :
x>0andy>0 R(x,c) A R(y,c)

1: m:=min(x,y) 1: m:=lo(x,y)
2: n:=max(x,y) 2: n:=hi(x,y)

3: whilem#0 3: while=(m=c)
4: r:= (nmod m) 4: r:="f(n,m)
5: n:=m 5: n:=m

6: m:=r 6: m:=r

7: return n 7: return n

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 5 of 22

example: a PROGRAM P and corresponding PROGRAM SCHEME §

Euclidean GCD program corresponding program scheme
precondition : precondition :
x>0andy>0 R(x,c) A R(y,c)

1: m:=min(x,y) 1: m:=lo(x,y)

2 n := max(x,y) 2: n:=hi(x,y)

3 while m # 0 3: while=(m=c)
4 r:= (nmod m) 4: r:="f(n,m)
5: n:=m 5: n:=m

6 m:=r 6: m:=r

7 return n 7: return n

Program execution is fully determined by the values of input variables x and y, i.e., by constraints
exclusively involving x and y and none of the program/internal variables {m,n,r}, e.g., consider the
number of times the loop body {4,5,6} is executed.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 6 of 22

example: a PROGRAM P and corresponding PROGRAM SCHEME §

Euclidean GCD program corresponding program scheme
precondition : precondition :
x>0andy>0 R(x,c) A R(y,c)

1: m:=min(x,y) 1: m:=lo(x,y)

2 n := max(x,y) 2: n:=hi(x,y)

3 while m # 0 3: while=(m=c)
4 r:= (nmod m) 4: r:="f(n,m)
5: n:=m 5: n:=m

6 m:=r 6: m:=r

7 return n 7: return n

Program execution is fully determined by the values of input variables x and y, i.e., by constraints
exclusively involving x and y and none of the program/internal variables {m,n,r}, e.g., consider the
number of times the loop body {4,5,6} is executed.

For example, {4,5,6} is executed twice iff:
min(x,y) #0 &

max(x,y) mod min(x,y) #0 &

min(x,y) mod (max(x,y) mod min(x,y)) =0

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 7 of 22

example: a PROGRAM P and corresponding PROGRAM SCHEME §

Euclidean GCD program corresponding program scheme
precondition : precondition :
x>0andy>0 R(x,c) A R(y,c)

1: m:=min(x,y) 1: m:=lo(x,y)

2 n := max(x,y) 2: n:=hi(x,y)

3 while m # 0 3: while=(m=c)
4 r:= (nmod m) 4: r:="f(n,m)
5: n:=m 5: n:=m

6 m:=r 6: m:=r

7 return n 7: return n

Program execution is fully determined by the values of input variables x and y, i.e., by constraints
exclusively involving x and y and none of the program/internal variables {m,n,r}, e.g., consider the
number of times the loop body {4,5,6} is executed.

For example, {4,5,6} is executed twice iff:

min(x,y) #0 & —(loxy=c) A
max(x,y) mod min(x,y) #0 & ﬁ(f(hixy7|oxy)ic) A
min(x,y) mod (max(x,y) mod min(x,y)) =0 f(loxy,f(hixyloxy)=c

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 8 of 22

example: unwinding a PROGRAM SCHEME into an INFINITE FLOW DIAGRAM

precondition :
R(x,c)AR(y,c)

l: m:=lo(x,y)

2: n:=hi(x,y)

3: if 7(m=c) then (7: return n) else
4: r:=f(m,n)

5: ni=m

6: m:=r

3: if =(m=c) then (7: return n) else
4: r:=f(m,n)

5: ni=m

6: m:=r

3: if =(m=c) then (7: return n) else
4: r:=f(m,n)

5: ni=m

6: m:=r

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 9 of 22

example: unwinding a PROGRAM SCHEME into an INFINITE FLOW DIAGRAM

]

(o NV S

Assaf Kfoury, CS 512,

[NV S

A N B W

precondition :
R(x,c)AR(y,c)

m:=lo(x,y)
n:=hi(x,y)

if =«(m=c) then (7:

r:=f(m,n)
n:=m
m:=r

~

=1 (m,n)

n:=m

3

=r

=

r:=f(m,n)
n:=m
m:=r

f ~(m=c) then (7:

—(m=c) then (7:

» every diverging execution is
described by an infinite sequence of
instruction labels of the form:

12(3456)°

> every converging execution is

return n) else described by a finite sequence of

instruction labels of the form:
12(3456)*37

return n) else

return n) else

Spring 2017, Handout 34 page 10 of 22

example: unwinding a PROGRAM SCHEME into an INFINITE FLOW DIAGRAM

]

(o NV S

[NV S

A N B W

precondition :
R(x,c)AR(y,c)

m:=lo(x,y)
n:=hi (x,y)

if =(m=c) then (7: return n) else

r:=f(m,n)
n:=m
m:=r

f ~(m=c) then (7: return n) else
=1 (m,n)

n:=m

~

3

=r

=

—(m=c) then (7: return n) else
=1 (m,n)

n:=m

3

=r

Assaf Kfoury, CS 512, Spring 2017, Handout 34

» every diverging execution is

described by an infinite sequence of
instruction labels of the form:
12(3456)°

every converging execution is

described by a finite sequence of

instruction labels of the form:
12(3456)*37

every diverging execution is
specified by an infinite set of
quantifier-free first-order WFF’s over
the signature {R,lo,hi,f,c } and
input variables {x,y}

every converging execution is
specified by a finite set of
quantifier-free first-order WFF’s over
the signature {R,lo,hi,f,c} and
input variables {x,y}

page 11 of 22

from PROGRAM SCHEMES to FIRST-ORDER LOGIC
> Let P be a deterministic sequential program whose prim ops are the interpretations
of the predicate symbols and function symbols of a signature X in a X-structure .7 .

> LetX = {x;,....xn}, Y= {y1,....0n},and Z £ {zy,...,2,}, be input variables,
output variables, and program variables of P, withm > 1,n > 0, and p > 0.

In particular, an execution of P is triggered by an assignment of values from the
domains of .# to the input variables X. If and when an execution of P terminates,
the returned output is the set of values stored in the variables Y.

> Let S be the program scheme corresponding to program P, i.e., the interpretation
of Sin ./, denoted S | is exactly P.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 12 of 22

from PROGRAM SCHEMES to FIRST-ORDER LOGIC

> Let P be a deterministic sequential program whose prim ops are the interpretations
of the predicate symbols and function symbols of a signature X in a X-structure .7 .
> LetX = {x;,....xn}, Y= {y1,....0n},and Z £ {zy,...,2,}, be input variables,
output variables, and program variables of P, withm > 1,n > 0, and p > 0.
In particular, an execution of P is triggered by an assignment of values from the

domains of .# to the input variables X. If and when an execution of P terminates,
the returned output is the set of values stored in the variables Y.

> Let S be the program scheme corresponding to program P, i.e., the interpretation
of Sin .#, denoted S , is exactly P.

> Theorem 1: Let Paths(S) £ {r1, 7, ...} be the set of all finite execution paths in
program scheme S. Let every test in S be a first-order WFF ¢ over signature X with
FV(p) CXUYUZ.

For every m; € Paths(S) there is a first-order WFF o; over X with
FV(a;) C {x1,...,%,} such that for every execution of P = S on input values
a2 (ay,...,am):

the execution converges by following path m; iff (.#,d) = o; .
> Let PathConstraints(S) = {a, o, . ..} be the first-order WFF’s thus defined over
signature X with free variables in X.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 13 of 22

from PROGRAM SCHEMES to FIRST-ORDER LOGIC
> Theorem 2 is a weaker version of Theorem 1 that applies to common
programming languages (Python, Java, Haskell, C, etc.) — why?

> Theorem 2: Let Paths(S) = {m;, 7, ...} be the set of all finite execution paths in
program scheme S. Let every test in S be a first-order literal (i.e., an atomic or
negated atomic WFF) over signature ¥ with variables in X UY UZ.

For every m; € Paths(S) there is a conjunction ¢; of literals over X with variables in
{x1,...,x,} such that for every execution of P = S on input values
a2 (ay,....am):

the execution converges by following path 7; iff (.#,a) = o; .

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 14 of 22

from PROGRAM SCHEMES to FIRST-ORDER LOGIC

> Let S be a program scheme whose prim ops are in the signature £ and whose
input variables are X = {x,...,xn,}. Let € be a class of Z-structures.
Let® = {¢;,¢,,...} be aset (possibly infinite) of first-order WFF’s over
signature X with FV(¢;) C {x1,...,x,} forevery i > 1.

We say that @ enforces totality of program scheme S (i.e.,
termination/convergence of all executions by S) in the class ¥ iff:

for every .# € %€ and every m-tuple @ £ (ay, ... ,a,) of inputs

from the domains of .#, if (.#,a) |=® then the execution of S (@) converges.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 15 of 22

from PROGRAM SCHEMES to FIRST-ORDER LOGIC

> Let S be a program scheme whose prim ops are in the signature £ and whose
input variables are X = {x,...,xn,}. Let € be a class of Z-structures.
Let® = {¢;,¢,,...} be aset (possibly infinite) of first-order WFF’s over
signature X with FV(¢;) C {x1,...,x,} forevery i > 1.
We say that @ enforces totality of program scheme S (i.e.,
termination/convergence of all executions by S) in the class ¥ iff:

for every .# € %€ and every m-tuple @ £ (ay, ... ,a,) of inputs

from the domains of .#, if (.#,d)}=® then the execution of S/ (&) converges.

»> Corollary: The following are equivalent statements:

1. @2 {¢,p,...} enforces totality of program scheme S in class %.

2. Forevery .# € ¢ and allinputs @ = (ay,...,a;) from the domains of .#,
it holds that if (., d) = ® then (.#,d) = V> 0.

3. Forevery .# € ¢ and allinputs @ = (ay,...,a,) from the domains of .#,
it holds that (.7, @) = (Ai=1 i = V=1 &).

4. Forevery ./ € €, itholds that . = V% (Ai=1 @i = Vis1 0).

Note: If & is an infinite set, then A ¢; is an infinitary conjunction, and thus not in the
syntax of first-order logic. Likewise, \/;> o is an infinitary disjunction, and thus not in the
syntax of first-order logic, when PathConstraints(S) = {0y, ¢, ...} is an infinite set.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 16 of 22

HOW STRONG CAN WE HOPE TO MAKE THE PRECONDITIONS?
> We think of ® as a set of formal preconditions for program scheme S.

Question: Given an arbitrary program scheme S, can we formulate the
preconditions ®, as a set of first-order WFF’s, to enforce totality of S?

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 17 of 22

HOW STRONG CAN WE HOPE TO MAKE THE PRECONDITIONS?
> We think of ® as a set of formal preconditions for program scheme S.

Question: Given an arbitrary program scheme S, can we formulate the
preconditions ®, as a set of first-order WFF’s, to enforce totality of S?

> Exercise: Let S be an arbitrary program scheme over some signature X with input
variables X £ {x,...,x,}.
Define an infinitary WFF W (note: W is not restricted to be first-order) over
signature X with FV(¥) C X such that for every X-structure .# and all inputs
a2 (ay,...,ay) from the domains of .#, it holds that

it (.#,a)E=% then the execution of S# (@) converges .

In words, W enforces totality of S in all Z-structures ., not restricted to any
particular class.

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 18 of 22

THE UNWIND PROPERTY

> Let S be a program scheme over some signature ¥ with input variables X = {x1,...,xy}.

We say S unwinds in a class % of Z-structures iff there is a finite subset
{m,...,m} C Paths(S) and corresponding finite subset { ¢y, ..., } C PathConstraints(S)
such that, for all .# € € and all inputs @ £ (ay, . ..,a,) from the domains of ./

the execution of S (@) converges iff (.4 ,@) = oy V...V 0y .
Informally, only a finite set of k > 1 paths are used by converging executions of S. Put

differently, if S unwinds in the class %, then S is equivalent to a “trivial” (i.e., loop-free)
program scheme.

1 Strictly, { 4 | /4 |=®} is the class defined as { 4 | (.# ,d) |= P for all m-tuples @ from the domains of .Z }.
FV(®) C {xy,...,xn} and d is an assignment of values to the free variables in .

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 19 of 22

THE UNWIND PROPERTY

> Let S be a program scheme over some signature ¥ with input variables X = {x1,...,xy}.

We say S unwinds in a class % of Z-structures iff there is a finite subset
{m,...,m} C Paths(S) and corresponding finite subset { ¢y, ..., } C PathConstraints(S)
such that, for all .# € € and all inputs @ £ (ay, . ..,a,) from the domains of ./

the execution of S (@) converges iff (.4 ,@) = oy V...V 0y .
Informally, only a finite set of k > 1 paths are used by converging executions of S. Put
differently, if S unwinds in the class %, then S is equivalent to a “trivial” (i.e., loop-free)
program scheme.

»> Theorem 3: Let S be a program scheme over signature X with input variables
X & {x{,...,xn}. Let @ be a set (possibly infinite) of first-order WFF’s over
signature X with FV(®) C X and let ¢ & { 4 | 4 = ®}.

If ® enforces totality of S in the class ¢, then S unwinds in the class %

In other words, we cannot constrain the interpretations in ¢ for a program scheme
S by first-order conditions & in order to ensure termination — unless we also make
superfluous the presence of the loops in S.

1 Strictly, { 4 | # |=®} is the class defined as { 4 | (.4 ,d) |= P for all m-tuples @ from the domains of .Z }.
FV(®) C {xy,...,xn} and d is an assignment of values to the free variables in .

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 20 of 22

THE UNWIND PROPERTY

> Proof Sketch for Theorem 3: By contradiction. Assume that ® enforces totality of
S in the class &, but yet S does not unwind in the class %, and we then get a
contradiction.

Consider PathConstraints(S) = {0, @, ...}. By the Corollary of Theorems 1 and
2 (see part 2 in particular), together with the preceding assumption, we must have:
For every k > 1 there is a X-structure .# € % and there are inputs

a2 (ay,...,an) from the domains of .# such that (.#,d) = ®U{-ay,...,—04}
(straightforward details of this argument are omitted).

Hence, for every k > 1, the set of first-order WFF's ®U {—a,...,—0y} is
consistent. Hence, by Compactness of first-order logic, the full set
PdU{—0y,x,...} is consistent/satisfiable. Hence, there is a X-structure .# € ¢
and there are inputs @ 2 (ay, ... ,a,,) from the domains of .# such that

(A ,a) = PU{—0y,—0p,...} and, in particular, (#,d) = {—oy,—ap,...} which
implies that S/ (@) does not converge. But this contradicts the assumption that &
enforces totality of S in the class € (again, straightforward details are omitted).

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 21 of 22

Assaf Kfoury, CS 512, Spring 2017, Handout 34 page 22 of 22

