CS 512 Formal Methods, Spring 2017

Instructor: Assaf Kfoury

Lecture 3: Propositional Logic - Soundness, Completeness and Compactness

January 26, 2017

Snehal Pandit

(These lecture notes are **not** proofread and proof-checked by the instructor.)

General Information:

- Lecture notes (by scribes) are not proof-checked by the instructor. They are a service from the from the scribe to the rest of class.
- One page project proposal due on Friday, 02/03.
- One dropbox folder to submit each assignment.
- Open area of research: theory + implementation of SAT solvers for inutitionistic propositional logic.

Curry-Howard Correspondence

Programs and intuitionistic logic have a very high correspondence between them. Programs - as proofs, Types- as formulas.

Soundness

Let Γ be the knowledge base. If $\Gamma \vdash \psi$ is valid, then $\Gamma \models \psi$ holds.

Completeness

 $\Gamma \vdash \psi$ is valid iff $\Gamma \models \psi$ holds. If Γ is infinite, we need another preliminary result - compactness.

Suppose ψ is a WFF with 100 propositional variables/atoms.

- Q1. Can you decide if ψ is satisfiable? Yes.
- Q2. If yes, can you produce a formal proof for $\psi?$ Yes.
- Q3. Can you systematically generate all WFFs of a propositional logic? Yes.

Example: Given three propositional atoms x_1, x_2, x_3 and connectives \neg and \land then

WFFs of size 1: x_1, x_2, x_3

WFFs of size 2: $\neg x_1, \neg x_2, \neg x_3$

WFFs of size 3: $x_1 \wedge x_2$, $x_2 \wedge x_3$, $x_1 \wedge x_3$

Dove-tailing:

- 1. Produce a formal proof of length 1.
- 2. Produce a formal proof of length 2.
- 3. Then use dove-tailing method to find all WFFs.

Q4. Can you systematically generate all well-formed natural deduction formal proofs? Yes.

Lemma: Suppose Γ is finitely satisfiable. Then for every WFF ψ , either $\Gamma \cup \{\psi\}$ or $\Gamma \cup \{\neg\psi\}$ is finitely satisfiable.

Proof:

Let $X = \{x_1, x_2, x_3, \dots\}$

Let $\psi_1, \psi_2, \psi_3 \dots$ be a fixed enumeration of all the WFFs of propositional logic over X. X $\cup \{ \land, \neg \}$ Define a nested sequence of supersets of Γ as: $\triangle_0 \subset \triangle_1 \subset \triangle_3 \dots$

$$\triangle_0 = \Gamma$$

$$\Delta_{i+1} = \begin{cases} \Delta_i \cup \{\psi_i\}, & \text{if } \Delta_i \cup \{\psi_i\} \text{ is finitely satisfiable.} \\ \\ \Delta_i \cup \{\neg\psi\}, & \text{otherwise.} \end{cases}$$
(1)

Define a set $\triangle = \bigcup \triangle_i$

Facts:

- (a) For every WFF ψ of propositional logic, either $\psi \in \triangle$ or $\psi \notin \triangle$.
- (b) For every proposition x_i either $x_i \in \triangle$ or $\neg x_i \in \triangle$.

Define a boolean evaluation of σ as follows:

$$\sigma(x_i) = \begin{cases} True, & \text{if } x_i \in \Delta \\ \\ False, & \text{if } x_i \notin \Delta \end{cases}$$
(2)

Claim:

 σ satisfies \bigtriangleup

- 1. Take an arbitrary ψ in \triangle .
- 2. Prove by structural induction that σ satisfies ψ .

Hence, σ satisfies Γ .