Lecture 2: Semantics of Classical Propositional Logic Febrary 2, 2017 Qi Wang

(These lecture notes are **not** proofread and proof-checked by the instructor.)

Compactness:

- Compactness \Rightarrow Topological sorting works for DAGs.
- Knigs Lemma: a finitely-branching infinite tree always has an infinite path. Every node's branch is finite. However, the tree is still infinite.
- Topological sorting finite DAG: diagonal circle can find a path.
- Soundness(theory) and completeness(truth) are like two-side of one story.

Infinitary PL:

- WFF can be infinite $|\varphi| = \mathbb{N}_0$ countably infinite. \mathbb{N}_0 is the first infinite.
- $\mathbb{N}_0 + \mathbb{N}_0 = \mathbb{N}_0$
- $\mathbb{N}_0.\mathbb{N}_0 = \mathbb{N}_0 \to \mathbb{N}_0$ explained by dove tailing: will have all the pairs for natural numbers
- If we want to prove $\mathbb{N}_0 * \mathbb{N}_0 \leftrightarrow \mathbb{N}_0$, we can't use induction, since induction builds up induction hypothesis based on a finite n.

Compare Natural Deduction with Truth-Table:

- De Morgan's Law tautologies. In CS, we focus on implementing the methods.
- Natural Deduction:
 - 1. For De Morgan's First Law, we can use Natural-deduction, but it's complicating and frustrating for us to write and use. And we use $\neg \neg e$.
 - 2. For De Morgan's Second Law, slightly simpler.
 - 3. For De Morgan's Third Law, don't have to use $\neg \neg e$.
 - 4. For De Morgan's Fourth Law, use $\neg \neg e$. (the way to prove it using Natural-deduction in the lecture slides is not the only way to do, but you'll still need $\neg \neg e$.
- Truth Table:

Simpler than Natural-deduction and nicer. Since we only have two variables, we only need four rows.

In Truth Table, the number of columns is linear to the size of formulas.

• Notice: $\neg \neg e \equiv LEM \equiv PBC$, which are forbidden by intuitionistically Propositional Logic. No intuitionistically valid formal proofs of De Morgan's First and Fourth Laws. \rightarrow Truth Table beats Natural-deduction in this round.

• Complexity: Natural-deduction is better than Tru	uth Table.
# of rows in Truth Table: 2^n for <i>n</i> variables	Explode!!!
# of columns in Truth Table; proportion of sub f	ormulas Just OK.

Terms of PL WFFs:

- Terms
 - 1. Valid WFFs / tautologies: have soundness and completeness, can get by Natural-deduction.

In Truth Table: last columns are all true. \leftarrow tautology.

- 2. Satisfiable WFFs: In Truth Table: last columns have at least one row true.
- 3. Unsatisfiable WFFs / contradictions. In Truth Table: last columns are all false.
- 4. Falsifiable WFFs In Truth Table: last columns have at least one row false.
- Relationships:
 - 1. Valid WFFs is part of Satisfiable WFFs.
 - 2. Negation of satisfiable WFF is NOT unsatisfiable WFF, but valid WFF.
 - 3. Negation of falsifiable WFF is NOT tautological WFF.
- Representation:

arphi	$\neg \varphi$
T	F
T	F
•	•
	•
F	T
T	F
T	F
T	F
\downarrow	\downarrow
falsifiable	satisfiable

Semantic Tabeaux / Analytic Tableaux

- Want to show φ is analytic, prove $\neg \varphi$ is not satisfiable WFF.
- Unsigned Rules of Analytic tableaux: $\frac{\varphi \lor \psi}{\varphi \mid \psi} \quad \frac{\neg(\varphi \lor \psi)}{\neg \varphi \text{ or } \neg \psi} \quad \frac{\varphi \land \psi}{\varphi \text{ or } \psi} \quad \frac{\neg(\varphi \land \psi)}{\neg \varphi \mid \neg \psi} \quad \frac{\varphi \rightarrow \psi}{\neg \varphi \mid \psi} \quad \frac{\neg(\varphi \rightarrow \psi)}{\neg \varphi \mid \psi} \quad \frac{\neg \neg \varphi}{\varphi \text{ or } \neg \varphi} \quad \frac{\neg \varphi}{\varphi}$

• Example: \neg (2)	$p \wedge q) \to (\neg p \lor \neg q)$	q)		
line 1:	$\neg \varphi$			Root of tableaux
line 2:	$\neg (p \land q)$		(from line 1)	Not conjunction
line 3:	$\neg(\neg p \lor \neg q)$		(from line 1)	Not disjunction
line 4:	$\neg \neg p$		(from line 3)	
line 5:	$\neg \neg q$		(from line 3)	
line 6:	p		(from line 4)	
line 7:	q		(from line 5)	
				——— still linear
line 8: $\neg p$		$\neg q$	(from line 2)	
line 9: \perp		\perp		
Closed				

- \perp : find a WFF and its negation along a path
- computer: check if a path is closed ($p\&\neg p$ both exist along a path), if every path is closed, then φ is tautology.
- Tableau is maximum tried every sub rule.
- Roots for tableaux could be a finite set of WFFs.
- Tableaux check satisfiability: take the negation of whatever you want to prove satisfiability, try to close it.
 - $\neg \phi \rightarrow \bot$: no way to satisfiable, which means ϕ is tautology.

Strict: tree as thin as possible. For each (formula) WFF, the corresponding expansion rules has been applied at most once on each path.

• Theorem:

Given a set of a tableau $\Gamma = \{\varphi_1, \varphi_2, ..., \varphi_n\}$ satisfiable \iff the tableau starting from Γ cannot be closed(unsatisfiable).

|φ| = n - a finite Propositional Logic among all size n WFFs.
say for all WFFs of size 22, f(22), does it has a proportion of valid WFFs?
If have fixed number of variables, at some point, more WFFs doesn't give more information (just repeating or negating of previous WFFs).

Next time:

- expandable to first order
- more tableaux
- Resolution
- DPN

Reference:

- 1. http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512-Spring17/Lecture/HD07.universe-of-PL-WFFs.pdf
- 2. http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512-Spring17/Lecture/HD08.de-morgans-laws.pdf