CS 512 Formal Methods, Spring 2017	Instructor: Assaf Kfoury
Lecture 2: Semantics of Classical Propositional Logic	
Febrary 2, 2017	Qi Wang

(These lecture notes are not proofread and proof-checked by the instructor.)

Compactness:

- Compactness \Rightarrow Topological sorting works for DAGs.
- Knigs Lemma: a finitely-branching infinite tree always has an infinite path. Every node's branch is finite. However, the tree is still infinite.
- Topological sorting
finite DAG: diagonal circle can find a path.
- Soundness(theory) and completeness(truth) are like two-side of one story.

Infinitary PL:

- WFF can be infinite
$|\varphi|=\mathbb{N}_{0}$ - countably infinite. \mathbb{N}_{0} is the first infinite.
- $\mathbb{N}_{0}+\mathbb{N}_{0}=\mathbb{N}_{0}$
- $\mathbb{N}_{0} \cdot \mathbb{N}_{0}=\mathbb{N}_{0} \rightarrow$ explained by dove tailing: will have all the pairs for natural numbers
- If we want to prove $\mathbb{N}_{0} * \mathbb{N}_{0} \leftrightarrow \mathbb{N}_{0}$, we can't use induction, since induction builds up induction hypothesis based on a finite n.

Compare Natural Deduction with Truth-Table:

- De Morgan's Law - tautologies.

In CS, we focus on implementing the methods.

- Natural Deduction:

1. For De Morgan's First Law, we can use Natural-deduction, but it's complicating and frustrating for us to write and use. And we use $\neg \neg e$.
2. For De Morgan's Second Law, slightly simpler.
3. For De Morgan's Third Law, don't have to use $\neg \neg e$.
4. For De Morgan's Fourth Law, use $\neg \neg e$. (the way to prove it using Natural-deduction in the lecture slides is not the only way to do, but you'll still need $\neg \neg e$.

- Truth Table:

Simpler than Natural-deduction and nicer. Since we only have two variables, we only need four rows.
In Truth Table, the number of columns is linear to the size of formulas.

- Notice: $\neg \neg e \equiv L E M \equiv P B C$, which are forbidden by intuitionistically Propositional Logic. No intuitionistically valid formal proofs of De Morgan's First and Fourth Laws. \rightarrow Truth Table beats Natural-deduction in this round.
- Complexity: Natural-deduction is better than Truth Table. \# of rows in Truth Table: 2^{n} for n variables Explode!!! \# of columns in Truth Table; proportion of sub formulas Just OK.

Terms of PL WFFs:

- Terms

1. Valid WFFs / tautologies: have soundness and completeness, can get by Naturaldeduction.
In Truth Table: last columns are all true. \leftarrow tautology.
2. Satisfiable WFFs:

In Truth Table: last columns have at least one row true.
3. Unsatisfiable WFFs / contradictions.

In Truth Table: last columns are all false.
4. Falsifiable WFFs

In Truth Table: last columns have at least one row false.

- Relationships:

1. Valid WFFs is part of Satisfiable WFFs.
2. Negation of satisfiable WFF is NOT unsatisfiable WFF, but valid WFF.
3. Negation of falsifiable WFF is NOT tautological WFF.

- Representation:

φ	$\neg \varphi$
T	F
T	F
\cdot	\cdot
-	\cdot
F	F
T	F
T	\cdot
\cdot	\dot{F}
-	\downarrow
T	satisfiable

Semantic Tabeaux / Analytic Tableaux

- Want to show φ is analytic, prove $\neg \varphi$ is not satisfiable WFF.
- Unsigned Rules of Analytic tableaux:
$\frac{\varphi \vee \psi}{\varphi \mid \psi} \frac{\neg(\varphi \vee \psi)}{\neg \varphi \text { or } \neg \psi} \quad \frac{\varphi \wedge \psi}{\varphi \text { or } \psi} \frac{\neg(\varphi \wedge \psi)}{\neg \varphi \mid \neg \psi} \quad \frac{\varphi \rightarrow \psi}{\neg \varphi \mid \psi} \frac{\neg(\varphi \rightarrow \psi)}{\varphi \text { or } \neg \varphi} \frac{\neg \neg \varphi}{\varphi}$
- Example: $\neg(p \wedge q) \rightarrow(\neg p \vee \neg q)$
line 1: $\quad \neg \varphi$
Root of tableaux
line 2: $\quad \neg(p \wedge q) \quad$ (from line 1) Not conjunction
line 3: $\quad \neg(\neg p \vee \neg q) \quad$ (from line 1) Not disjunction
line 4: $\quad \neg \neg p$
(from line 3)
line 5: $\quad \neg \neg q$
line 6: $\quad p$
line 7: $\quad q$
(from line 3)
(from line 4)
(from line 5)
still linear
line 8: $\neg p \quad \neg q \quad$ (from line 2)
line 9: $\perp \perp$
Closed
- \perp : find a WFF and its negation along a path
- computer: check if a path is $\operatorname{closed}(p \& \neg p$ both exist along a path $)$, if every path is closed, then φ is tautology.
- Tableau is maximum - tried every sub rule.
- Roots for tableaux could be a finite set of WFFs.
- Tableaux check satisfiability: take the negation of whatever you want to prove satisfiability, try to close it. $\neg \phi \rightarrow \perp$: no way to satisfiable, which means ϕ is tautology.
Strict: tree as thin as possible. For each (formula) WFF, the corresponding expansion rules has been applied at most once on each path.
- Theorem:

Given a set of a tableau $\Gamma=\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right\}$ satisfiable \Longleftrightarrow the tableau starting from Γ cannot be closed(unsatisfiable).

- $|\varphi|=n$ - a finite Propositional Logic among all size n WFFs.
say for all WFFs of size $22, f(22)$, does it has a proportion of valid WFFs?
If have fixed number of variables, at some point, more WFFs doesn't give more information (just repeating or negating of previous WFFs).

Next time:

- expandable to first order
- more tableaux
- Resolution
- DPN

Reference:

1. http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512-Spring17/Lecture/HD07.universe-of-PL-WFFs.pdf
2. http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512-Spring17/Lecture/HD08.de-morganslaws.pdf
