CS512 Formal Methods, Spring 2017

Instructor: Assaf Kfoury February 28th Notes by Shravan Kumar

(These lecture notes were **not** proofread and proof-checked by the instructor)

1. Binary decision diagrams. Refer to Handout 14, sections 6.1 and 6.2 to be read from LCS book. 6.3 and 6.4 for further reading.

2. λ -calculus is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It sets the foundation for functional programming languages. Analogically speaking, what a turing machine is to real computers, is what λ -calculus is to programming languages. Propositional logic provides us with an idea as to how we study other logical languages for modeling.

3. Read the introduction of - Donald Knuth, 2009, Art of Programming Languages, Vol 4. Available at *http://www.cs.utsa.edu/ wagner/knuth/*.

4. Exercise problem in Slide 12. Solution below for the ordering: r q p.

 $\varphi \stackrel{\Delta}{=} \left(\left(q \to p \right) \land r \right) \to \left(p \leftrightarrow r \right) \land q$

Case 1: $r := \bot$; then $((q \to p) \land \bot) \to (p \leftrightarrow \bot) \land q$; whose result is true.

Case 2: $r := \top$; $((q \to p) \land \top) \to (p \leftrightarrow \top) \land q$; $(q \to p) \to p \land q$; We have two sub cases now based on q.

Case 2.1: $q := \bot$; $(\bot \to p) \to p \land \bot$; whose result is false.

Case 2.2: $q := \top$; $(\top \rightarrow p) \rightarrow p \land \top$; $p \rightarrow p$; whose result is true.

So, ultimately tree looks like,

5. Write if - then - else using the standard logical connectives.

if φ then ψ else $\theta \Leftrightarrow (\varphi \to \psi) \land (\neg \varphi \to \theta)$

6. Consider the second tree in Slide 13.

Applying the $\{C1, C2, C3\}$ steps in Slide 18, we get the following results.

Apply rule C1,

Applying rule C2,

Applying rule C3,

Applying rule C1 again,

which is the ROBDD obtained in the end.